K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

Ta có : Vì tam giác DEF đồng dạng với tam giác MNP theo tỉ số k=\(\dfrac{1}{2}\)

=> \(\dfrac{S_{DEF}}{S_{MNP}}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

=> \(S_{MNP}=\dfrac{S_{DEF}}{\dfrac{1}{4}}=\dfrac{6}{\dfrac{1}{4}}=24\left(cm^2\right)\)

Ta có: ΔDEF\(\sim\)ΔMNP theo tỉ số \(k=\dfrac{1}{2}\)(gt)

nên \(\dfrac{S_{DEF}}{S_{MNP}}=k^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{6}{S_{MNP}}=\dfrac{1}{4}\)

hay \(S_{MNP}=24\left(cm^2\right)\)

30 tháng 4 2021

a, △ABC~△MNP => AB/MN=3/2 => k=3/2

b, SABC/SMNP=k2=9/4

=> 36/SMNP=9/4 => SMNP=16 cm2

9 tháng 11 2017

Giả sử ΔMNP ~ ΔQRS theo tỉ số diện tích  S M N P S Q R S = k 2

Đáp án: C

2 tháng 6 2015

a) Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng 2/3

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{2}{3}\)=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB+BC+AC}{DE+EF+DF}=\frac{2}{3}\)

=> \(\frac{C_{ABC}}{C_{DEF}}=\frac{2}{3}\) (Kí hiệu \(C\) là chu vi) => \(C_{DEF}=\frac{3}{2}.C_{ABC}=\frac{3}{2}.8=12\) cm

b) 

D E F K A B C H

+) Dễ có tam giác DEK đồng dạng với tam giác ABH (do góc DEK = ABH; góc DKE = AHB)

=> \(\frac{AB}{DE}=\frac{AH}{DK}\) Mà \(\frac{AB}{DE}=\frac{2}{3}\Rightarrow\frac{AH}{DK}=\frac{2}{3}\)

+) Có : \(\frac{S_{ABC}}{S_{DEF}}=\frac{\frac{1}{2}.AH.BC}{\frac{1}{2}.DK.EF}=\frac{AH}{DK}.\frac{BC}{EF}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)

=> \(S_{ABC}=\frac{4}{9}.S_{DEF}=\frac{4}{9}.27=12\) cm2

*) Tổng quát: Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k

=> \(\frac{C_{ABC}}{C_{DEF}}=k;\frac{S_{ABC}}{S_{DEF}}=k^2\)

b) Ta có: ΔMNP∼ΔDEF(cmt)

nên \(\dfrac{C_{MNP}}{C_{DEF}}=k\)

hay \(\dfrac{C_{MNP}}{C_{DEF}}=\dfrac{3}{5}\)

 

2 tháng 4 2019

\(\Delta ABC\infty\Delta DEF\Rightarrow\frac{SABC}{SDEF}=4^2=16\)

\(\Rightarrow SDEF=\frac{SABC}{16}=\frac{100}{16}=6,25\)

AH
Akai Haruma
Giáo viên
2 tháng 6 2020

Lời giải:

Tỷ số đồng dạng của tam giác $ABC$ và $MNP$ là:

\(kk'=\frac{1}{3}.\frac{5}{6}=\frac{5}{18}\)