Cho tam giác ABC vuông tại C . Biết B=2 góc A . Tính A và B
a, Trên tia đôi tia CB lấy điểm D sao cho CD=CB . Chứng minh AD=AB
b, Trên AD lấy điểm M , trên CD lấy điểm N sao cho AM = AN . Chứng minh CN = CM
c, Chứng minh MN song song với BD
TRÌNH BÀY CÁCH LÀM VÀ VẼ HÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A^ + B^ = 90o (phụ nhau)
A^ + 2* A^=90o
3* A^ = 90o
A^= 30o
B^= 2* A^ =2* 30o = 60o
a)
Xét \(\Delta\)ACD và \(\Delta\)ACB:
ACD^ = ACB^= 90o
AC chung
CD =CB
=> \(\Delta\)ACD =\(\Delta\)ACB (2 cạnh góc vuông)
=> AD = AB(2 cạnh tương ứng)
Phải là :Trên AD lấy M, trên AB lấy N (AM = AN) chứ.
b)
\(\Delta\)ACD =\(\Delta\)ACB (cmt) => A1 =A2 (2 góc tương ứng)
Xét \(\Delta\)AMC và \(\Delta\)ANC:
AC chung
A1 =A2 (cmt)
AM =AN
=> \(\Delta\)AMC = \(\Delta\)ANC (c.g.c)
=> CM =CN (2 cạnh tương ứng)
c)
AD = AB (cmt) =. D^ = B^
D^ + B^ + DAB^ =180o
2* D^ +DAB^=180o
D^= \(\frac{180o-DAB}{2}\) (1)
Ta có: AM = AN => AMN^ = ANM^
AMN^ + ANM^ + DAB^ =180o
2* AMN^ + DAB = 180o
AMN^ = \(\frac{180o-DAB}{2}\) (2)
Từ (1) và (2) => D^ = AMN^
Mà D^ so le trong với AMN^ => MN // DB
(Bạn tự vẽ hình giùm)
a/ Ta có \(\widehat{B}=2\widehat{A}\)(1)
và \(\widehat{A}+\widehat{B}=90^o\)(\(\Delta ABC\)vuông tại C) (2)
Thế (1) vào (2), ta có: \(\widehat{A}+2\widehat{A}=90^o\)
=> \(3\widehat{A}=90^o\)
=> \(\widehat{A}=\frac{90^o}{3}=30^o\)
=> \(\widehat{B}=2\widehat{A}=2.30^o=60^o\)
Vậy \(\hept{\begin{cases}\widehat{A}=30^o\\\widehat{B}=60^o\end{cases}}\)
b/ Ta có \(\widehat{BCA}+\widehat{DCA}=180^o\)(kề bù)
=> 90o + \(\widehat{DCA}\)= 180o
=> \(\widehat{DCA}\)= 90o
\(\Delta ABC\)và \(\Delta ADC\) có: Cạnh AC chung
\(\widehat{DCA}=\widehat{BCA}\left(=90^o\right)\)
BC = DC (gt)
=> \(\Delta ABC\)= \(\Delta ADC\)(c. g. c) => AB = AD (hai cạnh tương ứng) (đpcm)
c/ Ta có \(\Delta ABC\)= \(\Delta ADC\)(cm câu b) => \(\widehat{BAC}=\widehat{DAC}\)(hai góc tương ứng)
\(\Delta CNA\)và \(\Delta CMA\)có: NA = MA (gt)
\(\widehat{BAC}=\widehat{DAC}\)(cmt)
Cạnh CA chung
=> \(\Delta CNA\)= \(\Delta CMA\)(c. g. c) => CN = CM (hai cạnh tương ứng) (đpcm)
a: Xét ΔCAD có CA=CD
nên ΔCAD cân tại C
mà CH là đường cao
nên H là trung điểm của AD
b: Xét ΔABD có
AC là đường trung tuyến
AC=BD/2
DO đó: ΔABD vuông tại A