Cho nửa đường tròn $(O)$ đường kính $AB = 2R$, dây $AC$ và tia tiếp tuyến $Bx$ nằm trên cùng nửa mặt phẳng bờ $AB$ chứa nửa đường tròn. Tia phân giác của góc $CAB$ cắt dây $BC$ tại $F$, cắt nửa đường tròn tại $H$, cắt $Bx$ ở $D$.
a) Chứng minh $FB = DB$ và $HF = HD$.
b) Gọi $M$ là giao điểm của $AC$ và $Bx$. Chứng minh $AC.AM = AH.AD$.
c) Tính tích $AF.AH + BF.BC$ theo bán kính $R$ của đường tròn $(O)$.
a) Vì AD là tia phân giác của góc CAB⇒góc CAH= góc HAB
mà góc CAH là góc nội tiếp chắn cung CH
góc HAB là góc nội tiếp chắn cung HB
⇒ cung CH=cung HB
Ta có: góc HBC là góc nội tiếp chắn cung CH
góc HBD là góc tạo bởi tia tiếp tuyến và dây cung chắn cung HB
⇒ góc HBC = góc HBD
lại có: góc AHB chắn nửa (O)⇒góc AHB=90o⇒AH\(\perp\)HB
Xét ΔFBD có: BH là đường cao đồng thời là đường phân giác
⇒ΔFBD cân tại B⇒FB=DB
Và BH là đường trung tuyến ⇒FH=FD
b)Ta có: góc ACB là góc nội tiếp chắn nửa (O)
⇒ góc ACB= 90o
Xét ΔABM vuông tại B có BC là đường cao ứng với cạnh huyền AM
AC.AM=AB2 ( hệ thức lượng trong Δ vuông ) (1)
Xét ΔABD vuông tại B có BH là đường cao ứng với cạnh huyền AD
AH.HD=AB2 ( hệ thức lượng trong Δ vuông ) (2)
Từ(1) và(2)⇒AC.AM=AH.HD
a) vì góc CAH= góc HAB( AH là p/g của góc CAB)
=> cung CH= cung BH
Ta có : sđ góc CBH=1/2 sđ cung CH( góc nt chắn cung CH) => góc CBH=1/2 cung BH (1)
sđ góc HBM=1/2 sđ cung BH ( góc tạo bởi tia tiếp tuyến và dây cung chắn cung BH) (2)
Từ 1 và 2 => góc CBH= góc HBM => CH là p/g của góc FBD
xét △ BDF có: CH là p/g của góc FBD
Mà BH còn là đường trung trực của FD( góc ABH chắn nửa đường tròn)
=>△BDF cân tại B => FB=DB : HF=HD
b) xét △ABM vuông tại B có: AC.AM=AB bình( hệ thức lượng trong tam giác vuông) (3)
△ABD vuông tại B có: AH.AD=AB bình( hệ thức lượng trong tam giác vuông) (4)
từ 3 và 4 => AC.AM=AH.AD_đpcm