K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho một dãy số nguyên A1,A2,...,AN. Bạn có thể thực hiện phép biến đổi sau với số lần tùy ý (có thể không thực hiện lần nào):+ Chọn một vị trí i từ 1 đến N, và đảo dấu Ai (tức là thay thể Ai bởi −Ai).Hãy cho biết số phép biến đổi ít nhất cần thực hiện, để dãy thu được thỏa mãn tính chất sau:+ Tích của hai phần tử bất kì trong dãy đều là số nguyên dương (nói cách khác, với mỗi cặp (i,j) thỏa 1...
Đọc tiếp

Cho một dãy số nguyên A1,A2,...,AN. Bạn có thể thực hiện phép biến đổi sau với số lần tùy ý (có thể không thực hiện lần nào):

+ Chọn một vị trí i từ 1 đến N, và đảo dấu Ai (tức là thay thể Ai bởi −Ai).

Hãy cho biết số phép biến đổi ít nhất cần thực hiện, để dãy thu được thỏa mãn tính chất sau:

+ Tích của hai phần tử bất kì trong dãy đều là số nguyên dương (nói cách khác, với mỗi cặp (i,j) thỏa 1 ≤ i < j ≤ N, ta có Ai ∗ Aj > 0).

Dữ liệu: Vào từ tệp văn bản POSI.INP

+ Dòng đầu tiên gồm số nguyên N (2 ≤ N ≤ 100) - số phần tử của dãy A.

+Dòng thứ hai gồm N số nguyên A1,A2,...,AN (−1000 ≤ Ai ≤ 1000) - mô tả dãy A.

Kết quả: Ghi ra tệp văn bản POSI.OUT

+ In ra một số nguyên duy nhất là số phép biến đổi ít nhất cần thực hiện. Trong trường hợp không có cách biến đổi, hãy in ra -1. 

(LẬP TRÌNH PASCAL)

0
22 tháng 9 2018

Câu trả lời là không. Và lời giải khá đơn giản. Thay dấu cộng bằng số 1 và dấu trừ bằng - 1. Xét tích tất cả các số trên bảng vuông. Khi đó, qua mỗi phép biến đổi, tích này không thay đổi (vì sẽ đổi dấu 4 số). Vì vậy, cho dù ta thực hiện bao nhiêu lần, từ bảng vuông (1, 15) sẽ chỉ đưa về các bảng vuông có số lẻ dấu -, có nghĩa là không thể đưa về bảng có toàn dấu cộng. 

Bạn tham khảo nha

15 tháng 2 2019

nhóm các số thành 2 nhóm:
1, các số chia hết cho 4: 4,8, ..., 1000
2, các số k chia hết cho 4: 2,6, ..., 998 (việc này hoàn toàn làm được nhờ tính giao hoán)
dễ thấy tổng/hiệu các số trong nhóm 1 chia hết cho 4 với các số trong nhóm 2, chia thành từng nhóm: (2,6), (10, 14), ... (994, 998) (có 250 nhóm tất cả).

Dễ thấy dù đặt dấu gì giữa các số này thì kết quả thu được luôn chia hết cho 4
vậy kết quả có được cuối cùng sau khi đặt dấu từ 2 nhóm luôn chia hết cho 4
cả 2 đều làm sai

11 tháng 7 2019

nhóm các số thành 2 nhóm: 1, các số chia hết cho 4: 4,8, ..., 1000 2, các số k chia hết cho 4: 2,6, ..., 998 (việc này hoàn toàn làm được nhờ tính giao hoán) dễ thấy tổng/hiệu các số trong nhóm 1 chia hết cho 4 với các số trong nhóm 2, chia thành từng nhóm: (2,6), (10, 14), ... (994, 998) (có 250 nhóm tất cả). Dễ thấy dù đặt dấu gì giữa các số này thì kết quả thu được luôn chia hết cho 4 vậy kết quả có được cuối cùng sau khi đặt dấu từ 2 nhóm luôn chia hết cho 4 cả 2 đều làm sai

Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0
Ví dụ 6. Tìm số lớn nhất trong dãy A các số a1, a2, ..., an cho trước.Ta sẽ dùng biến MAX để lưu số lớn nhất của dãy A. Việc xác định MAX có thể được thực hiện như sau: Đầu tiên gán giá trị a1 cho biến MAX. Tiếp theo, lần lượt so sánh các số a2, ..., an của dãy A với MAX. Nếu ai> MAX, ta gán ai cho MAX.INPUT: Dãy A các số ai, a¿, ..., a„ (n >]).OUTPUT: Giá trị MAX = max{ay, 4ạ,..., a„Ì.Từ đó, ta có thuật toán...
Đọc tiếp

Ví dụ 6. Tìm số lớn nhất trong dãy A các số a1, a2, ..., an cho trước.

Ta sẽ dùng biến MAX để lưu số lớn nhất của dãy A. Việc xác định MAX có thể được thực hiện như sau: Đầu tiên gán giá trị a1 cho biến MAX. Tiếp theo, lần lượt so sánh các số a2, ..., an của dãy A với MAX. Nếu ai> MAX, ta gán ai cho MAX.

INPUT: Dãy A các số ai, a¿, ..., a„ (n >]).
OUTPUT: Giá trị MAX = max{ay, 4ạ,..., a„Ì.
Từ đó, ta có thuật toán sau:
Bước 1. MAX← a1; i←1.
Bước 2. Nếu ai> MAX, gán MAX← ai.
Bước 3. i←i+ 1.
Bước 4. Nếu i≤n, quay lại bước 2.
Bước 5. Thông báo giá trị MAX và kết thúc thuật toán.

Dưới đây minh hoạ thuật toán trên với trường hợp chọn thỏ nặng nhất trong bốn chú thỏ có trọng lượng tương ứng là 2, 1, 5, 3 ki-lô-gam.

0
Ví dụ 6. Tìm số lớn nhất trong dãy A các số a1, a2, ..., an cho trước.Ta sẽ dùng biến MAX để lưu số lớn nhất của dãy A. Việc xác định MAX có thể được thực hiện như sau: Đầu tiên gán giá trị a1 cho biến MAX. Tiếp theo, lần lượt so sánh các số a2, ..., an của dãy A với MAX. Nếu ai> MAX, ta gán ai cho MAX.INPUT: Dãy A các số a1, a2, ..., an (n >1).OUTPUT: Giá trị MAX = max{a1, a2,..., an}.Từ đó, ta có thuật toán...
Đọc tiếp

Ví dụ 6. Tìm số lớn nhất trong dãy A các số a1, a2, ..., an cho trước.

Ta sẽ dùng biến MAX để lưu số lớn nhất của dãy A. Việc xác định MAX có thể được thực hiện như sau: Đầu tiên gán giá trị a1 cho biến MAX. Tiếp theo, lần lượt so sánh các số a2, ..., an của dãy A với MAX. Nếu ai> MAX, ta gán ai cho MAX.

INPUT: Dãy A các số a1, a2, ..., an (n >1).
OUTPUT: Giá trị MAX = max{a1, a2,..., an}.
Từ đó, ta có thuật toán sau:
Bước 1. MAX← a1; i←1.
Bước 2. Nếu ai> MAX, gán MAX← ai.
Bước 3. i←i+ 1.
Bước 4. Nếu i≤n, quay lại bước 2.
Bước 5. Thông báo giá trị MAX và kết thúc thuật toán.

Dưới đây minh hoạ thuật toán trên với trường hợp chọn thỏ nặng nhất trong bốn chú thỏ có trọng lượng tương ứng là 2, 1, 5, 3 ki-lô-gam.

0