K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(\widehat{ABC}>\widehat{ACB}\)

mà cạnh đối diện với góc ABC là cạnh AC

và cạnh đối diện với góc ACB là cạnh AB

nên AC>AB

b: Xét ΔABC có AC>AB

mà hình chiếu của AC trên BC là HC

và hình chiếu của AB trên BC là HB

nên HC>HB

c: Xét ΔKBC có HC>HB

mà HC là hình chiếu của KC trên BC

và HB là hình chiếu của KB trên BC

nên KC>KB

a: Xét ΔKBC có 

HB<HC

mà HB là hình chiếu của KB trên BC

và HC là hình chiếu của KC trên BC

nên KC>KB

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

12 tháng 12 2021

1: Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

12 tháng 12 2021

giúp em khúc 2,3,4 với ạ; tất cả đều cùng 1 bài

1 thì em chưa học đến tam giác cân

1: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có

CH chung

HA=HD

Do đó: ΔHAC=ΔHDC

Suy ra: CA=CD

3 tháng 12 2021

CA=CD

25 tháng 12 2021

1: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

25 tháng 12 2021

1: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

25 tháng 12 2021

THooi

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm của AD

H là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: DE//AB

c: Xét ΔEAD có 

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

Xét ΔEAC và ΔEDC có

EA=ED

EC chung

AC=DC
Do đó: ΔEAC=ΔEDC

Suy ra: \(\widehat{EAC}=\widehat{EDC}\)

7 tháng 1 2022

GT,KL tự viết (hình cũng tự vẽ)

a, Xét △AHB và △AHE có :

AH : chung

\(\widehat{AHB}=\widehat{AHE}(=90^o)\)

HB = HE (GT)

=>  △AHB = △AHE (c.g.c)

b, Xét  △AHB và △DHE có :

AH = DH(GT)

\(\widehat{AHB}=\widehat{DHE}(=90^o)\)

BH = EH (GT)

=> △AHB =  △DHE (c.g.c)

=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> DE // AB

c, Xét △AHC và △DHC có :

HC : chung

\(\widehat{AHC}=\widehat{DHC}(=90^o)\)

AH = DH (GT)
=> △AHC = △DHC (c.g.c)

=> AC = DC (2 cạnh tương ứng)

 \(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)

Xét △EAC và △EDC có :

EC : chung

\(\widehat{ECA}=\widehat{ECD}(cmt)\)

AC = DC (cmt)

=> △EAC = △EDC (c.g.c)

=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)

d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)

Xét △MEN và △DEA có :

\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)

\(\widehat{EMN}=\widehat{EDA}( so le)\)

=> △MEN = △DEA  (c.g.c)

=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)

Mà 2 góc ở vị trí đối đỉnh với nhau 

=> A , E , N thẳng hàng