Tứ giác ABCD có hai góc vuông tại đỉnh A và C hai đường chéo AC và BD cắt nhau tại O,BAO=BDC.chứng minh:
a,AB.DO=DC.AO
b,BC.DO=AD.COCO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △ ABO và △ DCO,ta có:
∠ (BAO) = ∠ (BDC) (gt)
Hay ∠ (BAO) = ∠ (ODC)
∠ (AOB) = ∠ (DOC) (đối đỉnh)
Vậy △ ABO đồng dạng △ DCO (g.g)
Vì △ ABO đồng dạng △ DCO nên:
∠ B 1 = ∠ C 1 (1)
Mà ∠ C 1 = ∠ C 2 = ∠ (BCD) = 90 0 (2)
Trong △ ABD, ta có: ∠ A = 90 0
Suy ra: ∠ B 1 = ∠ D 2 = 90 0 (3)
Từ (1), (2) và (3): Suy ra: ∠ C 2 = ∠ D 2
Xét △ BCO và △ ADO, ta có:
∠ C 2 = ∠ D 2 (chứng minh trên)
∠ (BOC) = ∠ (AOD) (đối đỉnh)
Vậy △ BOC đồng dạng △ ADO (g.g).
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB(Hai cạnh đối của hình bình hành ABCD)
\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)
Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)
Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)
Ta có: ED+EC=DC(E nằm giữa D và C)
FB+FA=AB(F nằm giữa A và B)
mà AB=DC(Hai cạnh đối của hình bình hành ABCD)
và ED=FB(cmt)
nên EC=FA
Xét tứ giác ECFA có
EC=FA(cmt)
EA=CF(cmt)
Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b: Xét ΔDKO vuông tại K và ΔBHO vuông tại H có
OD=OB
\(\widehat{DOK}=\widehat{BOH}\)
Do đó: ΔDKO=ΔBHO
Suy ra: DK=BH
Xét tứ giác BKDH có
DK//BH
DK=BH
Do đó: BKDH là hình bình hành
là BAO đồng dạng BDC mới phải mà
a,
Vì tam giác BAO đồng dạng BDC
=> \(\dfrac{AB}{DC}=\dfrac{AO}{DO}\)
=> \(AB.DO=DC.AO\)