K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Goi so chinh phuong co tan cung la 4 la a

Vi a co tan cung la 4 suy ra a chia het cho 2

Vi a chia het cho 2 va a la so chinh phuong suy ra a chia het cho 4

suy ra chu so hang chuc la chu so chan

2 tháng 3 2016

tận cùng 4 là số chính phương nên chia hết cho 4 nên chữ số hàng chục là chẵn

10 tháng 6 2016

Số chính phương; \(y=x^2\)có tận cùng là 4 là số chính phương của 1 số chẵn.

Nên nó (y) phải chia hết cho 4.

Mặt khác số bất kỳ có chữ số hàng chục là a, hàng đơn vị là 4: có thể viết dưới dạng: \(y=100\cdot m+\overline{a4}\)

100 chia hết cho 4; nên \(\overline{a4}\)chia hết cho 4 nên a phải là số chẵn. ĐPCM

11 tháng 6 2016

Giả sử có một số chính phương tận cùng là 4 có chữ số hành chục là một số lẻ thì số chính phương đó có tận cùng bằng 14; 34; 54; 74; hoặc 94. Các số chính phương này không chia hết cho 4 (1)

Một số chính phương tận cùng là 4 có thể là bình phương của 2 hoặc 8 => số đó chia hết cho 4, trái với (1)

Vậy số chính phương có chữ số tận cùng bằng 4 thì chữ số hàng chục của nó là một số chẵn. (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

23 tháng 12 2016

ta có số chính phương chẵn chia hết cho 2 suy ra số chính phương đó chia hết cho 4

suy ra số được tạo bởi 2 chữ số hàng chục và trăm chia hết cho 4

suy ra chữ số hàng đơn vị và hàng chục phải chẵn(dpcm)

7 tháng 8 2018

Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.