cho tam giác abc vuông tại A có ^ab = 3cm ^bc = 5cm. Lấy điểm D trên cạnh bc sao cho BD= BA. Kẻ đường thẳng vuông góc với BC tại D cắt AC tại E
a tính độ dài đoạn thẳng AC
b c/m BE là tia phân giác của^ABC
c so sánh AE và EC
d c/m BE là đường trung trực của AD
a: AC=4cm
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
Suy ra: \(\widehat{ABE}=\widehat{DBE}\)
hay BE là tia phân giác của góc ABC
c: Ta có: ΔBAE=ΔBDE
nên EA=ED
mà ED<EC
nên EA<EC
d: Ta có: BA=BD
nên B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
nên E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
Bài 1:
a, Ta có: ΔABC vuông tại A (gt)
=> BC2 = AB2 + AC2
=> AC2 = BC2 - AB2
= 102 - 62
= 100 - 36
= 64
=> AC2 = 64
=> AC = 8 cm
b, Vì 6 cm < 8 cm < 10 cm
=> AB < AC < BC
=> ˆACB<ˆABC<ˆBAC