Bài 6: Cho (P):y=\(\dfrac{-x^2}{4}\)và đường thẳng (d):y=m.(x-1)-2
a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B khi m thay đổi.
b) Gọi xA xB lan luot la hoành độ của A và B. Tìm m để xa2 xb +xb2 .xa dạt giá trị nhỏ nhất và tính giá trị đó?
a, Hoành độ giao điểm tm pt
\(\dfrac{x^2}{4}+m\left(x-1\right)-2=0\)
\(\Leftrightarrow x^2+4m\left(x-1\right)-8=0\)
\(\Leftrightarrow x^2+4mx-4m-8=0\)
\(\Delta'=4m^2-\left(-4m-8\right)=4m^2+4m+8=4\left(m^2+m\right)+2\)
\(=4\left(m+\dfrac{1}{2}\right)^2+1>0\)
Vậy pt luôn có 2 nghiệm pb
hay (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{4m}{4}=-m\\x_Ax_B=\dfrac{-4m-8}{4}=-m-2\end{matrix}\right.\)
Ta có \(x_Ax_B\left(x_A+x_B\right)\)Thay vào ta được
\(-m\left(-m-2\right)=m^2+2m+1-1=\left(m+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi m = -1