So sanh
A = 2000/2001 +2001/2002
B = 2000+2001/2001+2002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
B=2000+1+2002=4003
A=2000/2001+2001/2002
=2002.(2000+2001)/2001.2002
=2000+2001/2001<1
Mà B>1 suy ra A<B
Ta có
B= 2000/2001+2002 + 2001/2001+2002.
Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.
Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.
Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002
Suy ra B < A
Ta có : 2000/2001 > 2000/ 2001 + 2002 (1)
2001/2002 > 2001/2001+2002(2)
Cộng các bất đẳng thức (1) và (2) vế với nhau:
Vậy 2000/2001 + 2001/2002> 2000/2001+2002 hay A > B
B= \(\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002};\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2000}>\dfrac{2000+2001}{2001+2002}\)
\(\Rightarrow\) A>B
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:
Ta có:
\(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)(1)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)(2)
Cộng các bất đẳng thức (1) và ( 2) vế với nhau:
Vậy \(\frac{2000}{2001}\)+ \(\frac{2001}{2002}\)> \(\frac{2000+2001}{2001+2002}\)hay A > B.
Ta có:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) và \(B=\frac{2000+2001}{2001+2002}\)
\(\Rightarrow B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta Xét:
\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
\(\Rightarrow A>B\)