Bài 1:a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250<a<350b, tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50<x<80c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0<x<300 }d, tìm số tự nhiên a lớn nhất, biết 240 chia hết cho a, 700 chia hết cho ae, 144 chia hết cho x, 192 chia hết cho x và x>20f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và...
Đọc tiếp
Bài 1:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250<a<350
b, tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50<x<80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0<x<300 }
d, tìm số tự nhiên a lớn nhất, biết 240 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x>20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
Đặt \(a\left(1-b\right)=x;b\left(1-c\right)=y;c\left(1-a\right)=x\)
\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca=1-a\left(1-b\right)-b\left(1-c\right)-c\left(1-a\right)=1-x-y-z\)
BĐT cần c/m trở thành:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{3}{1-x-y-z}\)
\(\Leftrightarrow\left(1-x-y-z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-3\ge0\)
\(\Leftrightarrow\dfrac{1-x-y-z}{x}+\dfrac{1-x-y-z}{y}+\dfrac{1-x-y-z}{z}-3\ge0\)
\(\Leftrightarrow\dfrac{1-y-z}{x}+\dfrac{1-z-x}{y}+\dfrac{1-x-y}{z}-6\ge0\) (1)
Lại có: \(1-y-z=1-b\left(1-c\right)-c\left(1-a\right)=1-b-c+bc+ca=\left(1-b\right)\left(1-c\right)+ca\)
Nên (1) tương đương:
\(\dfrac{\left(1-b\right)\left(1-c\right)+ca}{a\left(1-b\right)}+\dfrac{\left(1-a\right)\left(1-c\right)+ab}{b\left(1-c\right)}+\dfrac{\left(1-a\right)\left(1-b\right)+bc}{c\left(1-a\right)}-6\ge0\)
\(\Leftrightarrow\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\)
BĐT trên hiển nhiên đúng theo AM-GM do:
\(\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\sqrt[6]{\dfrac{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}}=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Cám ơn bài giải của thầy Lâm ạ!
Và từ bài bất đăng thức này, đã được chế thành bài toán hình học trong 1 kì thi học sinh giỏi toán cấp tỉnh thầy ạ!