So sánh : C=1999^1999+1/1999^2000+1 và D=1999^1998+1/1999^1999+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)
\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)
Vậy...
ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0
nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998
< 19991999 + 1999 / 19992000 + 1999
< 1999(19991998 + 1) / 1999(19991999 + 1)
< 19991998 + 1 / 19991999 + 1
< B
Vậy A < B
ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)
\(=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)
\(=1999-\frac{1998}{1999^{1999}+1}\)
mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)
\(\Rightarrow A< B\)
\(\frac{1999^{1999+1}}{1999^{2000+1}}=1-\frac{1}{1999^{2000+1}};\)\(\frac{1999^{1998+1}}{1999^{1999+1}}=1-\frac{1}{1999^{1999+1}}\)
Vì \(1-\frac{1}{1999^{2000+1}}< 1-\frac{1}{1999^{1999+1}}\)nên \(\frac{1999^{1999+1}}{1999^{2000+1}}>\frac{1999^{1998+1}}{1999^{1999+1}}\)
\(C=\frac{1999^{1999}+1}{1999^{2000}+1}<\frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999.\left(1999^{1998}+1\right)}{1999.\left(1999^{1999}+1\right)}\)
\(=\frac{1999^{1998}+1}{1999^{1999}+1}\)\(=D\)
=> C<D
Ai k mik mik k lại. chúc các bạn thi tốt