Bài 5: Cho tam giác ABC có AB=AC, Kẻ BD\(\perp\)AC tại D, Kẻ CE\(\perp\)AB tại E, BD cắt CE tại H
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)ACE
b) Chứng minh: \(\Delta\)BCD = \(\Delta\)CBE
c) Chứng minh: \(\Delta\)BCD = \(\Delta\)CHD
d) Chứng minh: AH là tia phân giác của góc BAC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên BD=CE; AD=AE
Xét ΔBCD và ΔCBE có
BC chung
CD=BE
BD=CE
DO đó: ΔBCD=ΔCBE
c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có
BE=CD
\(\widehat{EBH}=\widehat{DCH}\)
Do đó: ΔBHE=ΔCHD
d: Ta có: ΔBHE=ΔCHD
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC