Cho $A$ là tập hợp gồm $6$ phần tử bất kỳ của tập hợp $\{0; \, 1; \, 2; \, ...; \, 14\}$. Chứng minh rằng tồn tại hai tập hợp con $B_1$ và $B_2$ của tập hợp $A$ (với $B_1$, $B_2$ khác nhau và khác rỗng) sao cho tổng tất cả các phần tử của tập hợp $B_1$ bằng tổng tất cả các phần tử của tập hợp $B_2$.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
15 tháng 3 2019
Đáp án là C
Ta có: số đối của – 2 là 2, số đối của 0 là 0, số đối của 3 là – 3 , số đối của 6 là – 6
Do đó, tập hợp B là: B = {-6; -3; 0; 2}