không thực hiện phép tính,hãy so sánh tổng M với 4,biết
M = 2010/2011 - 2011/2012 - 2012/2013 + 2013/2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận xét
\(\dfrac{2010}{2011}\)<1
...
\(\dfrac{2013}{2014}< 1\)
vì 1<4⇒M<4
Ta thấy
\(\dfrac{2010}{2011}< 1\)
\(\dfrac{2011}{2012}< 1\)
\(\dfrac{2012}{2013}< 1\)
\(\dfrac{2013}{2014}< 1\)
=> Tổng M của những phân số trên sẽ nhỏ hơn 1
=> M < 1
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=1-\(\dfrac{1}{2011}\)+1\(-\dfrac{1}{2012}\)+1-\(\dfrac{1}{2013}\)+1-\(\dfrac{1}{2011}\)
=4-(\(\dfrac{2}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\)) < 4
m=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=\(1-\dfrac{1}{2011}+1-\dfrac{1}{2012}+1-\dfrac{1}{2013}+1+\dfrac{2}{2011}\)
=4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\)
vì:
do \(\dfrac{1}{2011}< 1\)
\(\dfrac{1}{2012}< 1\)
\(\dfrac{1}{2013}< 1\)
nên \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 1-1-1=-1\)
hay \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 0\)
nên 4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 4\)
vậy tổng m <4
bài này mình tưởng phải lên cấp 2 mới có thế mà mấy em lớp 4 đã phải làm á
\(\frac{2010}{2011}\)+\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)+\(\frac{2013}{2011}\)
= 1 -\(\frac{1}{2011}\)+ 1 -\(\frac{1}{2012}\)+ 1 -\(\frac{1}{2013}\)+ 1 + \(\frac{2}{2011}\)
= 4 + \(\frac{1}{2011}\)-\(\frac{1}{2012}\)-\(\frac{1}{2013}\)< 4
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Ta có: \(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\frac{2014}{2014}\)\(=1+1+1+1=4\)
Vậy S < 4
M<4 :)
với cả đây là bài lớp 5
bài lớp 4 ạ