Bài 1: Chứng minh rằng
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)
\(\Leftrightarrow\)\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2-b\left(a-c\right)\left(a+c-b\right)^2=0\)
Đặt:
\(\begin{cases}a+b-c=x\\b+c-a=y\\a+c-b=z\end{cases}\)\(\hept{\Leftrightarrow\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
\(\Leftrightarrow\)\(\frac{x+z}{2}\left(\frac{x+y}{2}-\frac{y+z}{2}\right)y^2+\frac{y+z}{2}\left(\frac{x+z}{2}-\frac{x+y}{2}\right)x^2-\frac{x+y}{2}\left(\frac{x+z}{2}-\frac{y+z}{2}\right)z^2=0\)
\(\Leftrightarrow\frac{x+z}{2}\times\frac{x-z}{2}\times y^2+\frac{z+y}{2}\times\frac{z-y}{2}\times x^2-\frac{x+y}{2}\times\frac{x-y}{2}\times z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x+z\right)\left(x-z\right)y^2+\frac{1}{4}\left(z+y\right)\left(z-y\right)x^2-\frac{1}{4}\left(x+y\right)\left(x-y\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left[\left(x^2-z^2\right)y^2+\left(z^2-y^2\right)x^2\right]-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x^2y^2-z^2y^2+x^2z^2-x^2y^2\right)-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x^2-y^2\right)z^2-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
Vậy \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)
vế trái
(a+b)(b+c)(c+a)+4abc
=(ab+ac+b2+bc)(c+a)+4abc
=abc+ac2+b2c+bc2+a2b+a2c+abc+4abc
=(a2c+2abc+b2c)+(ab2+2abc+ac2)+(ba2+2abc+bc2)
=c(a2+2ab+b2)+a(b2+2bc+c2)+b(a2+2ac+c2)
=c(a+b)2+a(b+c)2+b(a+c)2 (đpcm)
Đặt a+b-c=x;b+c-a=y;c+a-b=z
=>\(a=\frac{x+z}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
Cần Cm: a(b-c)(b+c-a)2+c(a-b)(a+b-c)2-b(a-c)(a+c-b)2=0
=> \(\frac{x+z}{2}\left(\frac{x+y}{2}-\frac{y+z}{2}\right)^2\cdot y^2+\frac{y+z}{2}\left(\frac{x+z}{2}-\frac{x+y}{2}\right)\cdot x^2-\frac{y+x}{2}\cdot\left(\frac{z+y}{2}-\frac{z+x}{2}\right)^2\cdot z^2=0\)
=>\(\frac{1}{4}\left(x^2-z^2\right)\cdot y^2+\frac{1}{4}\cdot\left(z^2-y^2\right)\cdot x^2-\frac{1}{4}\left(x^2-y^2\right)\cdot z^2=0\)(luôn đúng)
=> đpcm