Tính giá trị biểu thức: 1.2 + 3.4 + 4.5 +...+ 99.100
Làm rõ ràng giúp mình nha, mình đang cần gấp! Đọc rõ đề giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
\(\text{#}HaimeeOkk\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)
\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)
\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)
\(A=1-\dfrac{1}{2020}\)
\(A=\dfrac{2019}{2020}\)
Vậy \(A=\dfrac{2019}{2020}\)
Sửa đề : `P=3/1.2+3/2.3+3/3.4+....+3/11.12`
`P=3/1.2+3/2.3+3/3.4+....+3/11.12`
`=3(1/1.2+1/2.3+1/3.4+...+1/11.12)`
`=3(1/1-1/2+1/2-1/3+1/3-1/4+...+1/11-1/12)`
`=3(1/1-1/12)`
`=3(12/12-1/12)`
`=3 . 11/12`
`=33/12`
`=11/4`
Vậy `P=11/4`
`#`𝐷𝑎𝑖𝑙𝑧𝑖𝑒𝑙
hình đề bị sai thì phải
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+\dfrac{3}{3\cdot4}+...+\dfrac{3}{11\cdot12}\) đề phải ntn chứ nhỉ?
\(=3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{11\cdot12}\right)\)
\(=3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{11}-\dfrac{1}{12}\right)\)
\(=3\left(\dfrac{1}{1}-\dfrac{1}{12}\right)\)
\(=3\left(\dfrac{12}{12}-\dfrac{1}{12}\right)\\ =3\cdot\dfrac{11}{12}\\ =\dfrac{33}{12}\\ =\dfrac{11}{4}\)
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
I don't now
mik ko biết
sorry
......................
b,\(B=2^2+4^2+...+20^2\)
\(\Rightarrow B=2^2\left(1^2+2^2+...+10^2\right)\)
\(\Rightarrow B=4.\left[1.\left(2-1\right)+2.\left(3-1\right)+...+10.\left(11-1\right)\right]\)
\(\Rightarrow B=4\left(1.2-1+2.3-2+...+10.11-10\right)\)
\(\Rightarrow B=4\left[\left(1.2+2.3+...+10.11\right)-\left(1+2+...+10\right)\right]\)
\(\Rightarrow B=4\left(\frac{10.11.12}{3}-\frac{11.10}{2}\right)\)
=> 3A = 3 [ 1.2 + 2.3 + 3.4 + ... + (n-1).n ]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +... + 1001.1002.3
=> 3A = 1.2.3 + 2.3 . ( 4-1 ) +3.4.( 5-2 ) + ... + 1001.1002 ( 1003-1000 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 1001.1002 .1003 - 1000.1001.1002
=> 3A = 1001.1002.1003
=> A = 1001 . 1002 . 1003 : 3
=> A = ?
số số hạng của tổng là
(1000-1):3+1=334(sh)
giá trị của tỏng là
(1000+1)x334:2=167167
Ta có :
khoảng cách giữa các số là 3
Số số hạng của dãy số trên là :
(1000 - 1): 3 +1 = 334 ( số số hạng )
Tổng các số trên là :
(1000+1) x 334 :2 = 167167
học Toán mà quên là chuyện thường tình mà .
1. Kiến thức cần ghi nhớ:
- Tỉ lệ của một bản đồ là tỉ số giữa một khoảng cách đo trên bản đồ và khoảng cách ngoài thực địa
- Muốn tìm độ dài thật, ta lấy độ dài thu nhỏ trên bản đồ nhân với mẫu số tỉ lệ bản đồ.
- Muốn tính độ dài trên bản đồ, ta lấy độ dài thật (sau khi đã đổi về cùng đơn vị đo với chiều dài thu nhỏ cần tìm) chia cho mẫu số của tỉ lệ bản đồ.
- Muốn tính tỉ lệ bản đồ, ta lấy độ dài thu nhỏ trên bản đồ chia cho độ dài thực tế (sau khi đã đổi về cùng đơn vị đo)
(Lưu ý: Nếu độ dài trong thực tế chưa cùng đơn vị đo với độ dài thu nhỏ thì phải đổi về cùng đơn vị với độ dài thu nhỏ trước khi thực hiện tính)
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A= 3.(1.2 + 2.3 + 3.4 + ..... +99.100)
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
đặt A = 1.2 + 3.4 + 4.5 +...+ 99.100
A=1.2+2.3+3.4+4.5+...+99.100
=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.﴾4‐1﴿+3.4.﴾5‐2﴿+4.5.﴾6‐3﴿+...+99.100.﴾101‐98﴿
=1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+4.5.6‐3.4.5+...+99.100.101‐98.99.100
=1.2.3‐1.2.3+2.3.4‐2.3.4+3.4.5‐3.4.5+4.5.6‐4.5.6+...+99.100.101
=99.100.101=999900
=>A=999900:3=333300
Vậy A=333300