Rút gọn biểu thức A bằng cách hợp lí, biết:
A = ( 1 - 1/22) x ( 1 - 1/32 ) x ( 1-1/42 ) x...x ( 1- 1/302 )
Giải chi tiết giúp mình nhé, ai nhanh mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a) \(\frac{x+1}{7}=\frac{5}{x-1}\Leftrightarrow\left(x+1\right)\left(x-1\right)=7.5\)
(x+1)(x-1)=35
=> x2-x+x-1=35
=> x2-1=35
x2=36
=>\(x=\pm6\)
b) 2z mới đúng k phải 22 nha
\(4x=5y;3y=2z\Rightarrow\frac{x}{5}=\frac{y}{4};\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{6}=\frac{3x}{3.5}=\frac{4y}{4.4}=\frac{2z}{2.6}=\frac{3x-4y+2z}{15-16+12}=\frac{42}{11}\)
bạn tự rút gọn rồi tìm x,y,z nha
a) Ta có: \(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)
\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b) Để B=16 thì \(4\sqrt{x+1}=16\)
\(\Leftrightarrow x+1=16\)
hay x=15
\(ĐK:x>0;x\ne4\\ B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{x+2\sqrt{x}+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ B=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+3\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}}{x-4}\)
( 3x/7 + 1 ) : (-4 ) = -1/28
3x/7 + 1 = -1/28 x (-4 )
(3x/7 + 1 = 1/7
3x/7 = 1/7 - 1
3x/7 = -6/7
Suy ra 3x = -6
x = -6 : 3
x = -2
Phải đề thế này không
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2+1}\)
b/ Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\Rightarrow a=\frac{\left(x+1\right)^2}{x^2+1}\ge0}\)với mọi x