Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM và CN cắt nhau tại G
1 chứng minh BM=CN
2 chứng minh AG là tia phân giác của góc BAC
3 chứng minh MN song song với BC
4 gọi H là giao điểm của AG và BC chứng minh AH vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét tứ giác AGCK có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo GK
Do đó: AGCK là hình bình hành
Suy ra: AG//CK
Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của BC
Xét ΔBAC có
AH là đường trung tuyến ứng với cạnh BC
BM là đường trung tuyến ứng với cạnh AC
AH cắt BM tại G
Do đó: G là trọng tâm của ΔABC
Suy ra: \(BG=\dfrac{2}{3}BM\)
\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)
\(\Leftrightarrow GM+MK=GK=\dfrac{2}{3}BM\)
\(\Leftrightarrow BG=GK\)
hay G là trung điểm của BK
a. Xét tam giác ABM và tam giác ACN có
góc A chung
AB = AC [ vì tam giác ABC cân ]
AM = AN [ \(AM=AN=\frac{AB}{2}=\frac{AC}{2}\)]
Do đó ; tam giác ABM = tam giác ACN [ c.g.c ]
b.Xét tam giác ANG và tam giác BNK có
NG = NK
góc ANG = góc BNK [ đối đỉnh ]
AN = BN [ vì N là tđ' của AB ]
Do đó ; tam giác ANG = tam giác BNK [ c.g.c ]
\(\Rightarrow\)góc AGN = góc BKN [ ở vị trí so le trong ]
\(\Rightarrow\)AG // BK