Hai ô tô khởi hành cùng một lúc đi từ A đến B. Ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10km/h nên đến B sớm hơn ô tô thứ hai 30 phút. Tính vận tốc của mỗi ô tô, biết rằng quãng đường AB dài 100km
giải chi tiết giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi vận tốc của ô tô thứ nhất là x km/h( x>10)
vận tốc của xe thứ hai là x-10 km/h
thời gian xe thứ 1 đi từ a-> b là 100/x h
thời gian xe thứ 2 đi từ a-> b là 100/x-10 h
do xe thứ 1 đến trc xe thứ 2 là 30 phút =1/2 h nên ta có pt: 100/x-10 -100/x=1/2
giải phương trình tìm đc x nha bn
\(42\) phút \(=\dfrac{7}{10}\) giờ
Gọi vận tốc của xe thứ nhất là \(a\left(a>0\right)\left(km/h\right)\)
\(\Rightarrow\)Vận tốc của xe thứ hai là \(a-12\left(km/h\right)\)
Theo đề ra, ta có phương trình:
\(\dfrac{270}{a-12}-\dfrac{270}{a}=\dfrac{7}{10}\)
\(\Leftrightarrow\dfrac{1}{a-12}-\dfrac{1}{a}=\dfrac{7}{2700}\)
\(\Leftrightarrow\dfrac{12}{a\left(a-12\right)}=\dfrac{7}{2700}\)
\(\Leftrightarrow7a^2-84a=32400\)
\(\Leftrightarrow7.\left(a-74,29\right)\left(a+62,29\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7=0\left(l\right)\\a-74,29=0\\a+62,29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=74,29\left(t/m\right)\\a=-62,29\left(l\right)\end{matrix}\right.\)
\(\Rightarrow a=74,29\)
\(\Rightarrow a-12=74,29-12=62,29\)
Vậy xe thứ nhất đi với vận tốc \(74,29km/h\); xe thứ hai đi với vận tốc \(62,29km/h\).
Gọi vận tốc ô tô thứ nhất thứ 2 lần lượt là a ; b ( a > b > 0 )
Theo bài ra ta có hệ \(\hept{\begin{cases}a-b=10\\\frac{100}{b}-\frac{100}{a}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b+10\\-\frac{100}{b+10}+\frac{100}{b}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=50\\b=40\end{cases}}\left(tm\right)\)
Vậy vận tốc xe thứ nhất là 50 km/h
vận tốc xe thứ 2 là 40 km/h
-Đổi: 30p=\(\dfrac{1}{2}\)h
- Gọi vận tốc của ô tô thứ nhất là: a (km/h) (a>12)
=> vận tốc của ô tô thứ hai là: a-12 (km/h)
- Thời gian ô tô thứ nhất đi AB là: \(\dfrac{120}{a}\) (h)
- Thời gian ô tô thứ hai đi AB là: \(\dfrac{120}{a-12}\) (h)
- Vì ô tô thứ nhất đến trước ô tô thứ hai 30p
=> pt: \(\dfrac{120}{a}\)+\(\dfrac{1}{2}\)=\(\dfrac{120}{a-12}\)
=> (bạn tự giải pt nhé) a=-48 (ktmđk) hoặc a=-60 (ktmđk)
Không biết mình sai hay do đề bài sai nữa :<<<<
Gọi vân tốc ô tô thứ nhất là x ( km/h )
Thời gian ô tô thứ nhất là : \(\frac{300}{x}\left(h\right)\)
Gọi vân tốc ô tô thứ hai là y : ( km/h )
Thời gian ô tô thứ hai là : \(\frac{300}{y}\left(h\right)\)
Vì ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10 km/h nên : x - y = 10 ( 1 )
Thời gian ô tô thứ nhất nhỏ hơn thời gian ô tô thứ hai 1 giờ nên : \(\frac{-300}{x}=\frac{300}{y}=1\)( 2)
Từ ( 1 ) và ( 2 ) ta có ;
\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=10\\\frac{300}{y}-\frac{300}{x}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=10+y\\300\left(x-y\right)=xy\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=10+y\\300\left(10+y-y\right)=\left(10+y\right).y\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=10+y\\3000=y^2+10\end{cases}\Leftrightarrow\hept{\begin{cases}x=10+y\\\hept{\begin{cases}y=50\\y=-60\end{cases}}\end{cases}}}\)\(\hept{\begin{cases}x=10+y\\3000=y^2+10\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10+y\\y=50;y=-60\end{cases}}\)( y = -60 loại )
\(\Rightarrow\)\(\hept{\begin{cases}x=60\\y=50\end{cases}}\)
Vậy bạn tự kết luận
Gọi vận tốc của ô tô thứ nhất là \(x (x>12)(km/h)\)
Khi đó vận tốc của ô tô thứ hai là \(x−12(km/h)\)
Thời gian ô tô thứ nhất đi từ A đến B là \(\dfrac{120}{x}\) \((h)\)
Thời gian ô tô thứ hai đi từ A đến B là \(\dfrac{120}{x-12}\) \((h)\)
Vì ô tô thứ nhất đến B trước ô tô thứ hai 30 phút = \(\dfrac{1}{2}\) h nên ta có phương trình:
\(\dfrac{120}{x-12}\) - \(\dfrac{120}{x}\) = \(\dfrac{1}{2}\)
\(\Leftrightarrow\) \(240x - 240 ( x-12)=x(x-12)\)
\(\Leftrightarrow\) \(240x-240x+2880 = x^2-12x\)
\(\Leftrightarrow\)\(x ^2 − 12 x − 2880 = 0 \)
\(\Leftrightarrow\)\(( x − 60 ) ( x + 48 ) = 0 \)
\(\Leftrightarrow\)\( \)[\(x-60=0 \) \(\Leftrightarrow\) [\(x = 60\)\(tm\)
\(x+48=0\) \(x=48(tm)\)
Gọi vận tốc của ô tô thứ nhất là x (km/h)
vận tốc của ô tô thứ hai là x - 10 (km/h)
ĐK: x > 0
Vì quãng đường AB dài 300 km:
⇒ Thời gian của ô tô thứ nhất là \(\dfrac{300}{x}\) (giờ)
⇒ Thời gian của ô tô thứ hai là \(\dfrac{300}{x-10}\) (giờ)
Vì ô tô thứ nhất nhanh hơn ô tô thứ hai là 1h nên ta có pt:
\(\dfrac{300}{x}+1=\dfrac{300}{x-10}\)
...
\(\Leftrightarrow\left[{}\begin{matrix}x=60\left(\text{TM}\right)\\x=-50\left(\text{loại}\right)\end{matrix}\right.\)
Vận tốc của ô tô thứ hai là: 60 - 10 = 50 km/h.
Vậy vận tốc của ô tô thứ nhất: 60 km/h.
vận tốc của ô tô thứ nhất: 50 km/h.
Gọi \(x\left(km/h\right)\) là vận tốc của ô tô thứ hai \(\left(x>0\right)\)
Khi đó: \(x+10\left(km/h\right)\) là vận tốc của ô tô thứ nhất
Thời gian ô tô thứ hai đi đến B là: \(\dfrac{300}{x}\left(h\right)\)
Thời gian ô tô thứ nhất đi đến B là: \(\dfrac{300}{x+10}\left(h\right)\)
Theo đề, ta có phương trình sau:
\(\dfrac{300}{x}-\dfrac{300}{x+10}=1\)
\(\Leftrightarrow x=50\left(km/h\right)\left(tm\right)\)
Vậy vận tốc của ô tô thứ hai là 50km/h
⇒ vận tốc ô tô thứ nhất là \(50+10=60\left(km/h\right)\)
45 phút=\(\frac{45}{60}=\frac{3}{4}\left(h\right)\)
Gọi quãng đường AB là x(km)
Thời gian đi từ A -> B với vận tốc 40km/h là: \(\frac{x}{40}\left(h\right)\)
Thời gian đi từ B -> A với vận tốc 50km/h là: \(\frac{x}{50}\left(h\right)\)
Theo bài ra ta có: \(\frac{x}{50}+\frac{x}{40}=\frac{3}{4}\)
\(\Rightarrow\frac{x}{200}=\frac{3}{4}\)
=> x=150(km)
Gọi vân tốc, thời gian xe ô tô thứ nhất lần lượt là a km/h ; b giờ (a;b > 0 )
Theo bài ra ta có hpt
\(\left\{{}\begin{matrix}ab=100\\\left(a-10\right)\left(b+\dfrac{1}{2}\right)=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=100\\\dfrac{a}{2}-10b-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{100}{a}\\\dfrac{a}{2}-\dfrac{1000}{a}-5=0\end{matrix}\right.\)<=> a = 50 (tm)
vậy vận tốc xe thứ nhất là 50 km/h
vận tốc xe 2 là 50 - 10 = 40 km/h