Cho tam giác vuông vuông góc tại A , kẻ tia AH sao cho AH vuông góc với BC tại H . kẻ tia phân giác góc BAH sao cắt BH tại D . trên tia CA lấy điểm K sao cho CB = CK
a) CMR : tam giác ADC cân b) BK//AD , DK//AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nha:
a) Xét tam giác vuông ADH ta có:
\(\widehat{ADH}=90^0-\widehat{DAH}\)
Xét tam giác vuông ABC ta có:
\(\widehat{DAC}=90^0-\widehat{DAB}\)
Lại có: \(\widehat{DAH}=\widehat{DAB}\) (vì AD là phân giác góc BAH)
suy ra: góc ADH = góc DAC
hay tam giác ADC cân tại C
b) bạn ktra lại đề nhé, làm sao BK // AD đc
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
\(\widehat{DAC}+\widehat{DAB}=90^0\)
\(\widehat{ADC}+\widehat{HAD}=90^0\)
mà \(\widehat{BAD}=\widehat{HAD}\)
nên \(\widehat{ADC}=\widehat{DAC}\)
VÌ \(\Delta ABC\)CÂN TẠI A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
A) XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{B}=\widehat{C}\left(CMT\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
=>\(\Delta ABH\)=\(\Delta ACH\)(ch-cgv)
b) vì\(\Delta ABH\)=\(\Delta ACH\)(cmt)
=> BH=CH ( HAI CẠNH TƯƠNG ỨNG)
=> AH LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)(ĐPCM)
C) TA CÓ \(\widehat{ABH}+\widehat{ABD}=180^o\left(kb\right)\)
\(\widehat{ACH}+\widehat{ACE}=180^o\left(kb\right)\)
MÀ \(\widehat{ABH}=\widehat{ACH}\left(CMT\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
XÉT \(\Delta ABD\)VÀ\(\Delta ACE\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(CMT\right)\)
\(DB=CE\left(GT\right)\)
=>\(\Delta ABD\)=\(\Delta ACE\)(C-G-C)
=>AD=AE
=> \(\Delta ADE\)CÂN TẠI A
D)TỪ CHỨNG MINH TRÊN T DỄ DÀNG CM ĐƯỢC \(\Delta HDI=\Delta HEI\)
\(\Rightarrow\widehat{DHI}=\widehat{EHI}\)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{DHI}=\widehat{EHI}=\frac{180^o}{2}=90^o\)
ta lại có \(\widehat{AHD}+\widehat{DHI}=\widehat{AHI}\)
THAY \(90^o+90^o=\widehat{AHI}\)
\(\Rightarrow\widehat{AHI}=180^o\)
=> \(\widehat{AHD}\)VÀ\(\widehat{DHI}\)KỀ BÙ
=> BA ĐIỂM A,H,I THẲNG HÀNG
a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
\(AB=AC\) ( Vì △ABC cân)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
BM=CN(gt)
Do đó : △ABC=△ACN\(\left(c.g.c\right)\)
b)Xét △vuoongAHB và △vuoongAKC có
AB=AC(vì △ABC cân)
\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)
⇒△AHB=△AKC ( cạnh huyền góc nhọn)
⇒AH=AK
a, Ta có : ^ABM = ^MBC - ^ABC (1)
^ACN = ^NCB - ^ACB (2)
Từ (1) ; (2) suy ra ^ABM = ^ACN
Xét tam giác ABM và tam giác ANC có :
^ABM = ^ANC ( cmt )
AB = AC ( gt )
MB = NC (gt)
Vậy tam giác ABM = tam giác ACN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
Xét tam giác AMN có : AN = AM
Vậy tam giác AMN là tam giác cân tại A
=> ^M = ^N (3)
b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4)
^ACK = ^ANC ( cùng phụ ^KCN ) (5)
Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK
=> ^HBM = ^KCN
Xét tam giác AHB và tam giác AKC ta có :
^ABH = ^ACK ( cmt )
AB = AC
^AHB = ^AKC = 900
Vậy tam giác AHB = tam giác AKC ( ch - gn )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có : ^HBM = ^OBC ( đối đỉnh )
^KCN = ^BCO ( đối đỉnh )
mà ^HBM = ^KCN (cmt)
Xét tam giác OBC có :
^OBC = ^OCB vậy tam giác OBC cân tại O
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
b: góc MBD=góc ECN
=>góc KBC=góc KCB
=>K nằm trên trung trực của BC
=>A,H,K thẳng hàng
a: Xét ΔCAE và ΔCDE có
CA=CD
\(\widehat{ACE}=\widehat{DCE}\)
CE chung
Do đó: ΔCAE=ΔCDE
a) Ta có: góc BAD = góc DAH (AD là phân giác góc BAH).
Mà góc DAC = 900 - góc BAD; góc ADC = 900 - góc DAH.
=> Góc DAC = Góc ADC.
=> Tam giác ADC cân tại C.
b) Ta có: CK = CB (gt) => Tam giác CKB cân tại C.
Góc K = (180o - Góc A) : 2.
Mà Góc CAD = (180o - Góc A) : 2.
=> Góc K = Góc CAD.
Mà 2 góc này ở vị trí đồng vị.
=> BK // AD (đpcm).
cám ơn nhưng mik ko cần nữa rùi . mình vẫn tích nhé