K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = AH và BD = BH

Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH

Suy ra: AC + BD = AH + BH = AB không đổi

29 tháng 12 2021

a: Xét tứ giác OAMC có 

\(\widehat{OAM}+\widehat{OCM}=180^0\)

Do đó: OAMC là tứ giác nội tiếp

a: góc ACO=1/2*sđ cung AO=90 độ

=>OC//BD

Xét ΔADB có

O là trung điểm của AB

OC//BD

=>C là trung điểm của AD

b: BC là tiếp tuyến của (O')

=>góc BCO'=90 độ

=>góc O'CA=góc OCB

=>góc CO'O=góc O'CO=góc O'OC

=>ΔOO'C đều

=>C thuộc (O') sao cho ΔOCO' đều

=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm

a: góc ACO=1/2*sđ cung AO=90 độ

=>OC//BD

Xét ΔADB có

O là trung điểm của AB

OC//BD

=>C là trung điểm của AD

b: BC là tiếp tuyến của (O')

=>góc BCO'=90 độ

=>góc O'CA=góc OCB

=>góc CO'O=góc O'CO=góc O'OC

=>ΔOO'C đều

=>C thuộc (O') sao cho ΔOCO' đều

=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm

loading...  loading...  

a: góc EHB+góc EDB=180 độ

=>BDHE nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD

29 tháng 5 2021

a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)

b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)

\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)

c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)

mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)

mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)

Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)

\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp