Giúp ạ
Bài 2. Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Chứng minh rằng AH = AK.
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
e) Khi góc BAC bằng 60 độ và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC.
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
c: Ta có: ΔAHB=ΔAKC
nên AH=AK
seo nói cj Lam như vậy