Cho △ABC có AB = 3cm, AC = 4cm, BC = 5cm. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a)∆ABC là tam giác vuông.
b) AB //HK
c) △AKI cân
d) BAK = AIK
e) △AIC = △AKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b) Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
a: ta có: HK\(\perp\)AC
AB\(\perp\)AC
Do đó HK//AB
b: Xét ΔAHK vuông tại H và ΔAHI vuông tại H có
AH chung
HK=HI
Do đó; ΔAHK=ΔAHI
Suy ra: \(\widehat{KAH}=\widehat{IAH}\)
c: ta có: ΔAHK=ΔAHI
nên AK=AI
hay ΔAKI cân tại A
a)ta có: HK⊥AC
AB⊥AC
mà 2 góc này nằm ở vị trí so le trong
=> HK//AB
b: Xét ΔAHK vuông tại H và ΔAHI vuông tại H có
AH chung
HK=HI
=> ΔAHK=ΔAHI(g.h-c.g.v)
\(=>\widehat{HAK}=\widehat{HAI}\)
c)theo chứng minh câu B ta có
ΔAHK=ΔAHI
=> AK=AI (2 cạnh tg ứng)
=> ΔAKI cân tại A
a: Ta có: AB\(\perp\)AC
IK\(\perp\)AC
Do đó: IK//AB
b: Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
AH chung
HK=HI
Do đó: ΔAKH=ΔAIH
Suy ra: AK=AI
Xét ΔAKI có AK=AI
nên ΔAKI cân tại A
c: Ta có: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{HAI}=90^0\)
mà \(\widehat{HAK}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
a: AB⊥AC
HK⊥AC
Do đó: AB//HK
b: Xét ΔAKI có
AH là đường cao
AH là đườg trung tuyến
Do đó: ΔAKI cân tại A
c: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{IAH}=90^0\)
mà \(\widehat{HAK}=\widehat{IAH}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
thì bạn làm đi
Thì lm cho bn ý đi