K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1 2022

a. Có 5 cách chọn 1 toa cho 6 người

b. Mỗi người có 5 cách chọn toa, do đó 6 người có \(5^6\) cách chọn

18 tháng 1 2022

B

4 tháng 1 2017

Chọn A

7 tháng 5 2023

 Không mất tính tổng quát, giả sử toa 1 có đúng 4 hành khách. Khi đó số cách để các hành khách lên toa 1 là \(C^4_8=70\) cách. Nếu gọi \(x,y\) lần lượt là số hành khách trên toa 2, 3 thì \(\left(x,y\right)\in\left\{\left(4;0\right);\left(3;1\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\). Khi đó có tất cả \(2\left(C^0_4+C^3_4.C^1_1\right)+C^2_4.C^2_2=16\) (cách). Vậy có tất cả là \(3.70.16=3360\) cách thỏa ycbt \(\Rightarrow\) Chọn C

7 tháng 5 2023

C. 3360

7 tháng 7 2019

Chọn C 

Chọn toa có 3 người có 3 (toa)

Chọn 3 hành khách xếp vào toa đó có (cách)

Hành khách còn lại có 2 cách chọn toa

Số cách chọn là: 3. .2 = 24 (C).

16 tháng 5 2017

Số cách xếp là:

\(C^3_4\cdot5\cdot1\cdot4=80\left(cách\right)\)

6 tháng 3 2017

Số cách lên toa của 7 người là: 

Ta tìm số khả năng thuận lợi của A như sau

 Chọn 3 toa có người lên: 

 Với toa có 4 người lên ta có:  cách chọn

 Với toa có 2 người lên ta có:  cách chọn

 Người cuối cùng cho vào toa còn lại nên có 1 cách

Theo quy tắc nhân ta có: 

Do đó: .

Chọn A.

NV
27 tháng 2 2023

Mỗi hành khách có 8 cách chọn toa tàu để lên, do đó không gian mẫu là: \(8^3\)

Chọn 3 toa trong 8 toa và xếp 3 hành khách vào 3 toa đó (mỗi hành khách 1 toa): \(A_8^3\) cách

Xác suất: \(\dfrac{A_8^3}{8^3}=\dfrac{21}{32}\)

14 tháng 2 2017