cho đa thức f(x)=ax2+bx+c
biết 7a+b=0
hỏi f(10).f(-3)có thể là số âm k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7a+b=0 => b=-7a
=> f(x)=ax2+bx+c=ax2-7ax+c
=> f(10) = 102a - 7a.10 + c = 100a-70a+c= 30a+c
f(-3) = (-3)2a - 7.a .(-3) + c = 9a+21a+c=30a+c
=> f(10).f(-3) = (30a+c)2 là số chính phương nên không thể là số âm
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
Sửa đề : f(3) => f(-3)
Ta có : \(f\left(x\right)=ax^{2\:}+bx+c\Rightarrow\hept{\begin{cases}f\left(10\right)=100a+10b+c\\f\left(-3\right)=9a-3b+c\end{cases}}\)
\(\Rightarrow f\left(10\right)-f\left(3\right)=91a+13b=13\left(7a+b\right)=0\)
\(\Rightarrow f\left(10\right)=f\left(-3\right)\Rightarrow f\left(10\right)f\left(-3\right)=f^2\left(10\right)\ge0\)
\(\Rightarrow f\left(10\right)f\left(-3\right)\)không thể là số âm