Đố mọi học sinh:
777 có bằng 333+333+333:3 không? Vì sao?
Ai có câu trả lời nhanh nhất sẽ được 1/2 ngày VIP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số dư của một số chính phương khi chia cho 4 chỉ có thể là 0 (khi số đó là số chính phương chẵn) hoặc 11 (khi số đó là số chính phương lẻ).Thật vậy! Gọi số chính phương đó là A=n2
Xét các trường hợp:
n=2k (k∈N) ⇒A=4k2, chia hết cho 4 (chia 4 dư 0)
n=2k+1 (k∈N) ⇒A=4k2+4k+1=4k(k+1)+1, chia 4 dư 1
--------------------------------
Ta có: 333; 555; 777 là các số lẻ nên:
333333=4a+1 (a∈N∗)
555555=4b+1 (b∈N∗)
777777=4c+1 (c∈N∗)
Do đó C=4a+1+4b+1+4c+1=4(a+b+c)+3
Suy ra C chia 4 dư 3.
Vậy C không phải là số chính phương. (vì số dư của một số chính phương khi chia cho 4 chỉ có thể là 0 hoặc 1)
Bạn Uzumaki Naturo giải sai rồi. Sai thứ nhất : Số lẻ thì có dạng 4k + 1 ; lấy ví dụ 11 = 4k + 3. Sai thứ hai 555 mũ 555 bằng 4b + 1 ; số 555 mũ 555 chia cho 4 dư -1 mới đúng. Như vậy số A chia cho 4 dư 1 + (-1) + 1 = 1 vẫn có thể là số chính phương mà.
Ta có : \(333^{333}=\left(333^4\right)^{83}\cdot333=\left(...1\right)^{83}\cdot333=\left(...1\right)\cdot333=\left(...3\right)\)
\(555^{555}=\left(...5\right)\)
\(777^{777}=\left(777^4\right)^{194}\cdot777=\left(...1\right)^{194}\cdot777=\left(...1\right)\cdot777=\left(...7\right)\)
Để mình giải giúp bạn nha!!!
Hình như bạn vừa trả lời câu này thì phải: http://vn.answers.yahoo.com/question/ind...
Cũng tương tự như mình vừa chứng minh câu trên.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
a/ 777333 = [(7 . 111)3]111 = (73 . 1113)111
333777 = [(3 . 111)7]111 = (37 . 1117)111
Do: 37 > 73 ; 1117 > 1113 => (37 . 1117)111 > (73 . 1113)111
=> 333777 > 777333
Tính:
333+333+333:3=333+333+111=777.
Vậy 333+333+333:3=777
Ta có :
333+333+333:3
= 333+333+111
= 666+111
= 777
Vậy 777 sẽ bằng 333+333+333:3