Given a triangle ABC having BAC = 1200, and AC= 2AB. The line passing through A perpendicular to AC intersects the perpendicular bisector of BC at O. Prove that the triangle OBC is an equilateral triangle
Giúp mk vs mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\widehat{ABM}=\widehat{APC}-\widehat{MPC}=\left(90+\frac{\widehat{ABC}}{2}\right)-90=\widehat{PBC}\)
Tương tự tra có: \(\widehat{NPB}=\widehat{PAM}\)
\(\Rightarrow\Delta MAP\approx\Delta NPB\)
\(\Rightarrow\frac{AP}{PB}=\frac{MA}{NP}=\frac{MP}{NB}\)
\(\Rightarrow MA.NB=NP.MP=NP^2=MP^2\)(Dễ thấy tam giác MNC cân có CP là đường cao và đường phân giác)
Ta lại có: \(\frac{MA}{NB}=\frac{MA^2}{MA.NB}=\frac{MA^2}{NP^2}=\frac{AP^2}{PB^2}=\frac{3^2}{4^2}=\frac{9}{16}\)
ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{7}\)( do AD là tia phân giác của \(\widehat{BAC}\))
\(\Rightarrow\frac{BD}{BC}=\frac{3}{11}\)
Ta có:
\(\frac{ED}{AC}=\frac{BD}{BC}=\frac{3}{11}\Rightarrow ED=\frac{3AC}{11}=\frac{3.7}{11}=\frac{21}{11}\)
ta có \(\frac{AB}{AD}=\frac{BC}{DC}\)
mà AB2+AC2=BC2
nên AB =12 ;BC=20
vậy diện h là:96