Tính tổng :
A=1-3/1x3 + 2-4/2x4 + ...+ 2011-2013/2011x2013 + 2012-2014 / 2012x2014 -2013-2014 / 2013x2014
nhớ giải cụ thể cho mình đấy !!! Ai nhanh nhất mình sẽ tíck cho!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Áp dụng \(|a|\ge0\)với \(\forall a\)Dấu "=" xảy ra khi \(a\ge0\)
Ta có: \(|x-2013|+|x-2015|=|x-2013|+|2015-x|\ge x-2013+2015-x=2với\forall x\)
Dâu "=" xảy ra khi \(x-2013\ge0\)và\(2015-x\ge0\)\(\Leftrightarrow\)\(2013\le x\le2015\)
Lại có: \(|x-2014|\ge0với\forall x\)
Dấu "=" xảy ra khi \(x-2014=0\Leftrightarrow x=2014\)
Do đó \(A\ge2+0=2với\forall x\)
Dấu "=" xảy ra khi \(2013\le x\le2015\)và \(x=2014\)\(\Leftrightarrow\)\(x=2014\)
Vậy \(minA=2\)khi\(x=2014\)
Ta có: \(\left|x-2013\right|+\left|x-2015\right|=\left|x-2013\right|+\left|2015-x\right|\ge\left|x-2013+2015-x\right|\)
\(\left|x-2013\right|+\left|2015-x\right|\ge2\)\(\left(1\right)\)
Và \(\left|2014-x\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|\ge2\)
Mà \(\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|=A\)
\(\Rightarrow A\)có GTNN là 2
Từ\(\left(1\right)\)
\(\Rightarrow\)Dấu \("="\)xảy ra khi \(\left(x-2013\right)\left(2015-x\right)\ge0\)
\(\Rightarrow2013\le x\le2015\)
\(\Rightarrow x=2014\)
Vậy, \(A\)có GTNN là 2 khi\(x=2014\)
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + ... + 2013 + 2014 - 2015 - 2016
A = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 2013 + 2014 - 2015 - 2016 )
A = (-4) + (-4) + ... + (-4)
A = (-4) . 504
A = (-2016)
Vậy A = (-2016).
~~~
A=1+(2-3-4+5) +(6-7-8+9)+...+(2014-2015-2016+2017)-2017=1-2017=-2016