cho tam giác ABC cân tại A hai đường cao BH và CK cắt nhau tại I
a) chứng minh tam giác IBC cân tại I
b) cmr: AI là tia phân giác của góc A
b) gọi D là trung điểm của BC, chứng minh 3 điểm A,D,I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{KCB}=\widehat{HBC}\)
hay ΔIBC cân tại I
b: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc A
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc EAD
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Gọi giao điểm của BH và CK là O
Ta có: góc HDB=góc KEC
=>90 độ-góc HDB=90 độ-góc KEC
=>góc OBC=góc OCB
=>OB=OC
hay O nằm trên đường trung trực của BC
=>A,M,O thẳng hàng
=>AM,BH,CK đồng quy
Hình bạn tự vẽ
a) CMR: AH = AK:
Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:
AB = AC ( vì tam giác ABC cân tại A )
góc A chung
Do đó: tam giác AHB = tam giác AKC ( ch-gn )
Suy ra: AH = AK ( 2 cạnh tương ứng)
b) CMR: góc KAI = góc HAI:
Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:
AH = AK ( chứng minh câu a )
cạnh AI chung
Do đó: tam giác KAI = tam giác HAI ( ch-cgv)
suy ra: góc KAI = góc HAI ( 2 góc tương ứng )
c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )
Xét tam giác BAM và tam giác CAM, có:
cạnh AM chung
AB = AC ( vì tam giác ABC cân tại A )
góc KAI = góc HAI ( chứng minh câu b )
do đó: tam giác BAM = tam giác CAM ( c-g-c)
suy ra: góc AMB = góc AMC ( 2 góc tương ứng )
ta có: góc AMB + góc AMC = 180 độ ( kề bù )
hay 2. góc AMB = 180 độ
=> 180 độ : 2 = 90 độ
do đó: AM vuông góc BC tại M ( đpcm )
Câu d mình làm sau do máy mình hết pin rồi!
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>AH=AK
c: Xét ΔAKI vuông tại Kvà ΔAHI vuông tại H có
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
d: Xét ΔIBC có góc IBC=góc ICB
nên ΔICB cân tại I
e: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
f: ΔABC cân tại A
ma AI là đường cao
nên AI là trung trực của BC
g: ΔAKI=ΔAHI
=>KI=HI