Cho tam giác ABC , D và E lần lượt nằm trên các cạnh AB và AC sao cho DE//BC và DE=BC/2 .Đường thẳng qua E song song với AB cắt BC ở M .
a) Chứng minh DE=BM và tam giác ADE=tam giác EMC
b) Chứng minh D là trung điểm cạnh AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Kẻ NF // AB
=> góc NMF = MFB (SLT); góc NFM = FMB (SLT) mà cạnh chung MF
=> Tam giác MNF và tam giác FBM (g- c- g)
=> MN = BF và BM = NF => BM = NF = AD
+) Chứng minh được: tam giác ADE = NFC (g- c- g) => DE = FC
=> DE + MN = FC + BF = BC = không đổi
Vậy...
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
1.
a) Xét tứ giác DEMB có:
DE//BM (gt)
BD//ME (gt)
=>tứ giác DEMB là hình bình hành
=>DE=Bm(đpcm)
b) có sai đề không bạn? mình nghĩ là tam giác ADE = t/g CME
c) VÌ DE//CD và CE=1/2 BC(gt) nên DE là đường trung bình của tam giác ABC.
=> AD=BD
hay D là truq điểm AD(đpcm)
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB