K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2022

\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:

\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)

\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)

Do \(a=1>0;-\dfrac{b}{2a}=m-1\)

TH1: \(m-1\ge1\Rightarrow m\ge2\)

\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)

\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)

TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)

Vậy \(0\le m\le4\)

NV
18 tháng 6 2021

\(g'\left(x\right)=0\Rightarrow x=0\)

Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)

\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)

\(\Rightarrow-m\le-3\Rightarrow m\ge3\)

4 tháng 1 2022

Tham khảo

undefined

NV
4 tháng 1 2022

- Với \(m=1\) thỏa mãn

- Với \(m\ne1\):

\(f'\left(x\right)=3\left(m-1\right)x^2-10x+m+3\)

\(f\left(\left|x\right|\right)\) có số cực trị bằng \(2k+1\) với \(k\) là số cực trị dương của \(f\left(x\right)\) nên hàm có 3 cực trị khi \(f'\left(x\right)=0\) có đúng 1 nghiệm dương

TH1: \(f'\left(x\right)=0\) có 1 nghiệm bằng 0 \(\Rightarrow m=-3\Rightarrow f'\left(x\right)=-12x^2-10x\) ko có nghiệm dương (loại)

TH2: \(f'\left(x\right)=0\) ko có nghiệm bằng 0 nào \(\Rightarrow f'\left(x\right)=0\) khi và chỉ khi nó có 2 nghiệm trái dấu

\(\Rightarrow ac< 0\Leftrightarrow3\left(m-1\right)\left(m+3\right)< 0\)

\(\Rightarrow-3< m< 1\) 

Vậy \(-3< m\le1\)

22 tháng 3 2021

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)