K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Để pt có 2 nghiệm pb thì:

$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)

Khi đó:

$2x_1^3+(m+2)x_2^2=5$

$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$

$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$

\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)

\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)

\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)

Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.

29 tháng 5 2023

Cho em hỏi làm sao lại chuyển được từ x1(2 - x2)x22 xuống thành x12x22 được vậy ạ?