K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2022

\(A=\dfrac{x+1}{x^2+x}\)

\(a,\) Điều kiện xác định: \(x^2+x\ne0\Leftrightarrow x\left(x+1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

\(b,A=\dfrac{x+1}{x^2+x}=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)

30 tháng 12 2022

 `a, x^2 +x` \(\ne\) `0` \(\Leftrightarrow x\left(x+1\right)\ne0\)

                          \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\)

                         \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

`b, A=(x+1)/(x^2+x) =(x+1)/(x(x+1))=1/x`

10 tháng 12 2022

a: ĐKXĐ: x<>2; x<>-2

b: \(A=\dfrac{3x\left(x-2\right)+2x+6}{2\left(x-2\right)\left(x+2\right)}=\dfrac{3x^2-6x+2x+6}{2\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{3x^2+4x+6}{2\left(x-2\right)\left(x+2\right)}\)

c: Khi x=-3 thì \(A=\dfrac{3\cdot\left(-3\right)^2-4\cdot3+6}{2\left(-3-2\right)\left(-3+2\right)}=\dfrac{21}{10}\)

17 tháng 12 2017

giup mik vs cac bn.

5 tháng 4 2020

Đề bài sai rồi bạn ! Mình sửa :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)

b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)

\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)

\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)

\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)

\(\Leftrightarrow P=\frac{-6}{x+1}\)

c) Để P nhận giá trị nguyên

\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)

\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)

Ta loại các giá trị ktm

\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

9 tháng 1 2018

dkxd  \(\hept{\begin{cases}\\\end{cases}}x-2=0;x+2=0\Leftrightarrow\hept{\begin{cases}\\\end{cases}x=+2;x=-2}\)

b/ \(\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}=\frac{x^2}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}-\frac{2.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}\)

\(\frac{x^2-x^2-2x-2x+4}{\left(x-2\right).\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)

tới khúc này bí rồi ^^

9 tháng 1 2018

a,ĐKXĐ của A là:\(x\ne+2;-2\)

b,\(\frac{x^2-x^2+2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4}{\left(x+2\right)\left(x-2\right)}\)

c,Để A\(\in\)Z=> (x+2)(x-2)\(\inƯ\)(4) hay \(x^2-4\inƯ\)(4)=\(\left(4;-4;2;-2;1;-1\right)\)

Ta có bảng

\(x^2-4\)x
4\(\sqrt{8}\)
-4 0
2\(\sqrt{6}\)
-2\(\sqrt{2}\)
1\(\sqrt{5}\)

Vậy A\(Z=>x\in\)( 0;\(\sqrt{8};\sqrt{6};\sqrt{2};\sqrt{5}\))