Tìm các số tự nhiên x,y biết rằng \(\left(2^x+1\right).\left(2^x+2\right).3^y=307\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
Tìm các cặp số nguyên x,y biết
a,\(2x^2+y^2+6=4\left(x-y\right)\)
b,\(x^2\left(y+2\right)+1=y^2\)
a) \(2x^2+y^2+6=4\left(x-y\right)\)
\(\Leftrightarrow2x^2+y^2+6-4x+4y=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
b/ x2(y + 2) + 1 = y2
<=> x2(y + 2) + 1 = (y + 2)(y - 2) + 4
<=> (y + 2)(x2 + 2 - y) = 3
Làm tiếp nhé
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
Bài 1:Nếu \(a=0\Rightarrow b^2=289\Rightarrow b=17\)(thỏa mãn)
Nếu \(a\ge1\) thì b\(\ge1\)nên b có dạng \(5k,5k+1,5k+2,5k+3,5k+4\)
Xét b=5k thì \(b^2=25k^2⋮5\)
Xét b=5k+1 thì \(b^2=\left(5k+1\right)^2=25k^2+10k+1\) chia 5 dư 1
Xét b=5k+2 thì \(b^2=\left(5k+2\right)^2=25k^2+20k+4\) chia 5 dư 4
Xét b=5k+3 thì \(b^2=\left(5k+3\right)^2=25k^2+30k+9\) chia 5 dư 4
Xét b=5k+4 thì \(b^2=\left(5k+4\right)^2=25k^2+40k+16\) chia 5 dư 1
Vậy với mọi \(b\ge1\) thì \(b^2\) chia 5 có số dư là 0,1,4
Mặt khác:\(a\ge1\Rightarrow10^a⋮5\)\(\Rightarrow10^a+288\) chia 5 dư 3 mà \(b^2\) chia 5 chỉ dư 0,1,4 (vô lý)
Vậy a=0,b=17 thỏa mãn
Bài 2:Vì \(\hept{\begin{cases}\left|x-3y+1\right|\ge0\\-\left(2y-0,5\right)^2\le0\end{cases}}\) mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)
\(\Rightarrow\hept{\begin{cases}\left|x-3y+1\right|=0\\-\left(2y-0,5\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+1=0\\2y=0,5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{0,5}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=\frac{3}{4}\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=\frac{1}{4}\end{cases}}\)
Bài 2 :
Ta có :
\(\left|x-3y+1\right|\ge0\)
\(-\left(2y-0,5\right)^2< 0\)
Mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)
Vậy không có giá trị nào của x và y thoã mãn đề bài
Chúc bạn học tốt ~
1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/