K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2020

chị j ơi bây giờ mới có 15/5/2020 à 

15 tháng 5 2020

ko trả lời linh tinh trên diễn đàn nếu trả lời linh tinh sẽ bị olm trừ điểm đấy

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

3 tháng 7 2015

Bài 2 :

Gọi số cần tìm là a. Ta có 

a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1) 
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2) 
a +83 chia hết cho 143 
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* ) 
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203

                                Vậy số cần tìm là 203.

16 tháng 7 2016

bài 2:

203 nha bạn

Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số...
Đọc tiếp

Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.

Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.

Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số lớn.

Bài toán 4: Hai số tự nhiên có tổng là 258 và biết khi lấy số lớn chia cho số bé thì được thương là 2 và số dư là 21. Tìm số bé.

Bài toán 5: Hai số tự nhiên có hiệu là 245 và biết khi lấy số lớn chia cho số bé thì được thương là 3 và số dư laf 41. Tìm số lớn.

Ai trả lời cho mk cũng sẽ được tick đúng và đặc biệt là người nhanh nhất. chỉ cần ghi đáp án thôi nha! Mk cảm ơn các bạn

 

3
20 tháng 10 2018

à bài này t học qua rồi

nhưng t ngại làm

bạn chờ  người khác làm nhé

21 tháng 10 2018

ủa mà bài này dễ mà                                                                                                                                                                                             cho hỏi bạn học lớp mấy vậy

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài