Tìm x,y,z là số nguyên thoả mãn: (2x+5y+1)(2|x|+y+x2+x)=105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.
mà \(2x+1\)lẻ
\(\Rightarrow\)\(5y\) là số chẵn
\(\Rightarrow\)\(y\) là số chắn
Có \(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn
\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ
\(\Rightarrow\)\(x=\pm1\).
Với \(x=1\)ta có:
\(\left(5y+3\right)\left(y+3\right)=65\)
suy ra \(y=2\).
Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn.
Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ
<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ
=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
đậu xanh đậu đỏ
đậu đen đậu vàng
bạn ơi cùng đậu
xem vui không nào...
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ
<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ
=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)
Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.
Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ
\(\Rightarrow\)5y là số chẵn
\(\Rightarrow\)y là số chắn
Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn
\(\Rightarrow\)2|x| là số lẻ
\(\Rightarrow\)x=0
Thay x=0 vào biểu thức ta có:
\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)
\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)
\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)
\(\Leftrightarrow5y+5y^2+1+y=105\)
\(\Leftrightarrow5y^2+6y+1=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)
Mà \(x;y\in Z\Rightarrow y=4\)
Vậy x=0;y=4(tmyc)
Lời giải:
$3xy+2x-5y=6$
$x(3y+2)-5y=6$
$3x(3y+2)-15y=18$
$3x(3y+2)-5(3y+2)=8$
$(3y+2)(3x-5)=8$
Đến đây lập bảng xét giá trị thôi bạn.