K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

\(\orbr{\begin{cases}\\\end{cases}}\)

25 tháng 7 2020

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

30 tháng 3 2022

sao cái dấu tương đương thứ 4 bạn bỏ c-a v ạ

 

23 tháng 1 2019

Câu hỏi của Trần Anh Đại  nếu ko vào được ib vs tui  để biết thêm chi tiết!

12 tháng 3 2019

Câu hỏi của Trần Anh Đại:bạn tham khảo tại đây!

25 tháng 7 2020

Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

Do a<>c:

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

Phá ngoặc:

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

Phân tích đa thức thành nhân tử:

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

Do b<>d:

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

25 tháng 7 2020

Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

Do a<>c:

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

Phá ngoặc:

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

Phân tích đa thức thành nhân tử:

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

Do b<>d:

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

Thỏa mãn.

25 tháng 2 2017

Bạn đưa về như họ là đc , mk thử giúp bạn

(2a + b)/(a+b) = (a+a+b)/(a+b) = a/(a+b) + (a+b)/(a+b) = a/(a+b) + 1

Ở câu hỏi tương tự người ta đưa về dạnh này

24 tháng 2 2017

bạn xem câu hỏi tương tự ý 

23 tháng 2 2018

Mình không chắc câu này lắm nhưng thôi giải dùm bạn vậy :((

\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)

\(\Leftrightarrow\)\(1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)

\(\Leftrightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Leftrightarrow\)\(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\)\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\)\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\)\(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)\)

\(\Leftrightarrow\)\(abc-acd+bd^2-b^2d=0\)

\(\Leftrightarrow\)\(\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow\)\(ac-bd=0\Leftrightarrow ac=bd\left(b\ne d\right)\)

Vậy bạn tự kết luận nha

14 tháng 10 2018

\(\Leftrightarrow1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)

\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{d}{d+a}=2\)

\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)+d\left(a-c\right)\left(a+b\right)\left(b+c\right)=0\)

\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)-d\left(c-a\right)\left(a+b\right)\left(b+c\right)=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(bc+bd\right)\left(d+a\right)-\left(da+db\right)\left(b+c\right)=0\)

\(\Leftrightarrow bcd+bca+bd^2+bda-abd-adc-db^2-dbc=0\)

\(\Leftrightarrow bca-acd+bd^2-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac-bd=0\)

\(\Leftrightarrow ac=bd\)

\(\Leftrightarrow\left(ac\right)^2=abcd\)\(\left(đpcm\right)\)

dành cho người không hiểu bài trên 

                                                                           \(#huybip#\)

23 tháng 2 2018

NGUYỄN CẢNH LINH QUÂN 

chẳng nhẽ CTV ko đc hỏi!

não có vấn đề à bn :))

23 tháng 2 2018

Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi