Cho m/n=1+1/2+1/3+1/4+..........+1/2016
Chứng tỏ rằng m chia hết cho 2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m:n = 1+1/2+1/3+...+1/2016
m=(1+1/2+1/3+...+1/2016) . n
m=(1+1/2016) +(1/2+1/2015) +(1/3+1/2014) +...+(1/1008+1/1009). n
m=2017/2016 +2017/(2x2015) +2017/(3x2014)+...+(2017/1008x1009). n
m=2017x(1/2016+1/(2x2015)+1/(3x2014)+...+1/(1008x1009) . n
Vậy m chia hết cho2017
Gọi 5 số tự nhiên liên tiếp là n, n+1, n+2, n+3, n+4 \(\left(n\inℕ\right)\)
Nếu n chia hết cho 5 => đpcm
Nếu n chia 5 dư 1 => n+4 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 2 => n+3 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 3 => n+2 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 4 => n+1 chia hết cho 5 (đpcm)
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5