Cho phân thức:
A=x2-10x+25
x2-5x
A. Tìm điều kiện ủa x để A được xác định rồi rút gọn A
B. Tinh gía trị của phân thức A tại x=-5
C. Tim x thuôc số nguyên để A nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) x≠2
Bài 2:
a) x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5x phải có giá trị nguyên.
=> x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .
\(\left(đk:x\ne5;x\ne0\right)A=\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}=1-\dfrac{5}{x}\in Z\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
a. \(x\ne5\) là ĐKXĐ của biểu thức P
b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)
c. P = -1 <=> x-5 =-1 <=> x=4
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)
c: Để A là số nguyên thì x-1-3 chia hết cho x-1
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
\(A=\dfrac{x-1}{x^2-1}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b) \(A=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
c) Thay \(x=-2\) vào A, ta có:
\(A=\dfrac{1}{-2+1}=-1\)
Vậy khi x = -2 thì A = -1
a) ĐKXĐ: \(x\ne\pm1\)
b) \(\dfrac{x-1}{x^2-1}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
c) Khi x = - 2
\(\dfrac{1}{\left(-2\right)+1}=\dfrac{1}{-1}=-1\)
Vậy khi x = - 2 thì biểu thức có giá trị bằng - 1
a) \(\dfrac{3x+3}{x^2-1}\)
\(ĐKXĐ:x\ne1\)
b) \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}\)
a: ĐKXĐ: \(x\notin\left\{0;5\right\}\)
\(A=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
b: THay x=-5 vào A, ta được:
A=-10/(-5)=2
c: Để A nguyên thì \(x\in\left\{1;-1;-5\right\}\)