Giải giúp mình với.Cho nửa đường tròn đường kính AB cố định và tiếp tuyến Ax tại A với đường tròn. Một điểm M di động trên nửa đường tròn cùng bên với tiếp tuyến Ax, tia BM gặp tia phân giác của góc Ax tại I. Tìm tập hợp điểm I khi M di động trên nửa đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Vì A,E,M,B cùng nằm trên (O)
nên AEMB nội tiếp
góc AMB=1/2*180=90 độ
=>AM vuông góc IB
ΔIAB vuông tại A có AM vuông góc IB
nên IA^2=IM*IB
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
a: góc BEA=1/2*180=90 độ
góc KEF+góc KMF=180 độ
=>KEFM nội tiếp
b: góc FAB=góc FAM+góc BAM
=1/2*góc IAM+góc BAM
=1/2*(1/2*sđ cung AM+sđ cung MB)
=1/2(1/2*sđ cung AM+180 độ-sđ cung AM)
=1/2(180 độ-1/2*sđ cung AM)
=90 độ-góc FAM
góc BFA=90 độ-góc FAM
=>góc BAF=góc BFA
=>ΔBAF cân tại B
a: góc BEA=1/2*180=90 độ
góc KEF+góc KMF=180 độ
=>KEFM nội tiếp
b: góc FAB=góc FAM+góc BAM
=1/2*góc IAM+góc BAM
=1/2*(1/2*sđ cung AM+sđ cung MB)
=1/2(1/2*sđ cung AM+180 độ-sđ cung AM)
=1/2(180 độ-1/2*sđ cung AM)
=90 độ-góc FAM
góc BFA=90 độ-góc FAM
=>góc BAF=góc BFA
=>ΔBAF cân tại B