K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Vì A,E,M,B cùng nằm trên (O)

nên AEMB nội tiếp

góc AMB=1/2*180=90 độ

=>AM vuông góc IB

ΔIAB vuông tại A có AM vuông góc IB

nên IA^2=IM*IB

16 tháng 11 2022

a:góc ABD=góc DCA

góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)

góc FAD=góc CAD

=>góc ABD=góc CBD

=>BD là phân giác của góc ABE

mà góc ADB=90 độ

nên BD là đường cao

=>ΔBAE cân tại B

b: Xét ΔEAB có

AC,BD là các đường cao

AC cắt BD tại K

Do đó: K là trực tâm

=>EK vuông góc với BA

c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác

nên ΔAKF cân tại A

=>góc AKF=góc AFK=góc KFE

=>AK//FE

Xét tứ giác AKEF có

AK//FE

AF//KE

KE=KA

Do đó: AKEF là hình thoi

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

a: góc BEA=1/2*180=90 độ

góc KEF+góc KMF=180 độ

=>KEFM nội tiếp

b: góc FAB=góc FAM+góc BAM

=1/2*góc IAM+góc BAM

=1/2*(1/2*sđ cung AM+sđ cung MB)

=1/2(1/2*sđ cung AM+180 độ-sđ cung AM)

=1/2(180 độ-1/2*sđ cung AM)

=90 độ-góc FAM

góc BFA=90 độ-góc FAM

=>góc BAF=góc BFA

=>ΔBAF cân tại B

a: góc BEA=1/2*180=90 độ

góc KEF+góc KMF=180 độ

=>KEFM nội tiếp

b: góc FAB=góc FAM+góc BAM

=1/2*góc IAM+góc BAM

=1/2*(1/2*sđ cung AM+sđ cung MB)

=1/2(1/2*sđ cung AM+180 độ-sđ cung AM)

=1/2(180 độ-1/2*sđ cung AM)

=90 độ-góc FAM

góc BFA=90 độ-góc FAM

=>góc BAF=góc BFA

=>ΔBAF cân tại B