Chứng minh rằng
a, 7^ 6 +7^ 5 - 7^ 4 chia hết cho 11
b, 10^9 +10^8 +10^7 chia hết cho 222
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có76+75+74=74x(72+7-1)
=74x55
do 55 chia hết cho 11 nên 74x55 chia hết cho 11
vậy76+75-74 chia hết cho 11
a) 55-54+53=53.(52-51+50)=53.(25-5+1)=53.21=53.3.7 chia hết cho 7
=>ĐPCM
b) 76+75-74=74.(72+71-70)=74.(49+7-1)=74.55=74.5.11 chia hết cho 11
=>ĐPCM
c) 109+108+107=107.(102+101+100)=(5.2)7.(100+10+1)=57.27.111=57.26.2.111
=57.26.222 chia hết cho 222
=>ĐPCM
d) 106-57=(2.5)6-5.56=26.56-5.56=(26-5).56=(64-5).56=59.56 chia hết cho 59
=>ĐPCM
\(5^5-5^4+5^3=5^2.5^3-5.5^3+1.5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)
Chia hết cho 7
=> dpcm
Các câu còn lại tương tự
a) 76 + 75 - 74
= 74.(72 + 7 - 1)
= 74.(49 + 7 - 1)
= 74.55
= 74.5.11 \(⋮11\left(đpcm\right)\)
b) 109 + 108 + 107
= 107.(102 + 10 + 1)
= 57.27.(100 + 10 + 1)
= 57.26.2.111
= 57.26.222 \(⋮222\left(đpcm\right)\)
a) 55 -54 + 53 =53 ( 52 - 5 +1) =53 .21 \(⋮\)7 (vì 21 \(⋮\)7)
=> 55 - 54 + 53 \(⋮\)7
b) 109 + 108 +107 = 107 (102+10+1) = 107 .111= 106 .10. 111 = 106 .5. 222\(⋮\)222 (vì 222\(⋮\)222)
=> 109 + 108 + 107 \(⋮\)222
a)5^5-5^4+5^3=5^3.(5^2-5+1)=5^3.(25-5+1)=5^3.21 \(⋮\) 7(đpcm)
b) ta có 222=2.111
mà 10 chia hết cho 2
=>10^9+10^8+10^7 chia hết cho 2 (1)
lại có ;
10^9+10^8+10^7=10^7.(10^2+10+1)=10^7.111 (2)
từ 1 và 2 suy ra 10^9+10^8+10^7 chia hết cho 222
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
7^6+7^5-7^4=7^4*(7^2+7-2)=7^4*55=7^4*5*11 chia hết cho 11
10^9+10^8+10^7=10^7*(10^2+10+1)=10^7*111=10^6*5*222 chi hết cho 222
Bạn có chăc chắn đúng k