Chứng minh rằng:
a)31/2.32/2.33/2....60/2=1.3.5....59
b)2!/3!+2!/4!+2!/5!+...+2!/n! < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = 1.3.5.7...59 = \(\frac{\left(2.4.6...60\right).\left(1.3.5.7...59\right)}{\left(2.4.6...60\right)}=\frac{1.2.3.4...59.60}{2^{30}.\left(1.2.3...30\right)}=\frac{31.32.33...60}{2^{30}}=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\)= P
Mình không hiểu, trần thị Loan làm như nào đấy giải thích rõ hơn
ta có:31/2.32.2....60.2=31.32...60/2^30=(31.32.33....60).((1.2.3...30)/2^30.(1.2.3...30)=(1.3.5..59).(2.4.6...60)/(2.4.6...60)=1.3.5...59
Ta biến đổi vế phải thành vế trái:
1.3.5....59=1.3.5...59.\(\frac{2.4.6.....60}{2.4.6.....60}=\frac{1.2.3.4.....60}{\left(1.2.3....30\right).\left(2.2.2.....2\right)}=\frac{31.32......60}{2.2.......2}=\frac{31}{2}.\frac{32}{2}.....\frac{60}{2}\)
Vậy chúng = nhau
\(P=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}......\frac{60}{2}=\frac{31.32.33.......60}{2.2.2........2}\)
Từ 31-60 có:60-31+1=30 (số hạng)
=>ở mẫu có 30 số hạng 2
=>\(P=\frac{32.32.33......60}{2^{30}}=\frac{\left(31.32.33.....60\right).\left(1.2.3.........30\right)}{2^{30}.\left(1.2.3.......30\right)}\)
\(P=\frac{\left(1.3.5.....59\right).\left(2.4.6......60\right)}{\left(2.4.6......60\right)}=1.3.5.....59=Q\)
=>P=Q
=1.48/2.2.2.2.40/2.2.2.56/2.2.2.36/2.2.44/2.2.52/2.2.60/2.2.34/2.38/2.42/2.46/2.50/2.54/2.58/2.31.33...59=1.3.5...59 cần chứng minh
Tớ làm được câu a thôi nhé!