Cho p là số nguyên tố lớn hơn 3
a, tìm số dư khi p2 chia cho 3
b, hỏi p2 +2015 là nguyên tố hay hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho p là số nguyên tố lớn hơn 3
a, tìm số dư khi p2 chia cho 3
b, hỏi p2 +2015 là nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Gọi số cần tìm là a ( a ∈ N)
Ta có:
a chia 5 dư 1
⇒ a+4 chia hết cho 5
a chia 7 dư 3
⇒ a+4 chia hết cho 7
Mà (5,7) = 1
⇒ a+4 chia hết cho 35
Vì a là số tự nhiên nhỏ nhất
⇒a+4 = 35
⇒a=35-4
⇒a=31
Vậy số tự nhiên cần tìm là 31
1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :
x=5a+1 ; x=7b+3
Nên 5a+1=7b+3
5a-7b=2
Ta thấy 5.6-7.4=2
Nên a=6; b=4
Vậy x=31
2) Theo đề bài : p2 + 4 và p2 - 4 đều là số nguyên tố
⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó
⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}
Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3
Vậy p=3
a)Ta có
p = 42k + y = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )
Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
1: Gọi số cần tìm là a
Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7
mà a nhỏ nhất
nên a=31
2: TH1: p=3
=>p^2+4=13 và p^2-4=5
=>NHận
Th2: p=3k+1
p^2-4=(3k+1-2)(3k+1+2)
=3(k+1)(3k-1)
=>Loại
TH3: p=3k+2
=>p^2-4=9k^2+12k+4-4
=9k^2+12k=3(3k^2+4k)
=>Loại
a, Vi p la snt >3 suy ra p khong chia het cho3 suy ra p2 khong chia het cho 3 suy ra p2 la so chia 3 du 1 vay p2 la so chia 3 du 1 b,vi p la no nguyen to lon hon 3 nen p la so le suy ra p2 la so le suy ra p2+2015 la so chan suy ra p2+2015chia het cho 2, ma p2+2015 lon hon 2 suy ra p2+2015 la hop so