K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

6 tháng 2 2017

mk nè,k đi

20 tháng 12 2016

Ai giải hộ mik bài này đi mình K cho

9 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

5 tháng 12 2019

gips mk với ai làm nhanh nhất mk sẽ k

31 tháng 10 2015

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)

=> \(\left(\frac{a_1+a_2+....+a_{2015}}{a_2+a_3+....+a_{2016}}\right)^{2015}=\frac{a_1.a_2.....a_{2015}}{a_2.a_3......a_{2016}}=\frac{a_1}{a_{2016}}\)

=> \(\left(\frac{a_1+a_2+....+a_{2015}}{a_2+a_3+....+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)