Bài 4: (3,5 điểm)
Cho tam giác ABC có ba góc nhọn ( AB < AC), M là trung điểm của cạnh BC. Trên tia AM lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh: ∆AMB = ∆DMC
b) Chứng minh : AB//CD
c) Kẻ AH vuông góc với BC tại H trên tia AH lấy điểm K sao cho H là trung điểm của AK. Chứng minh MH là phân giác của góc AMK
a/ Xét △ABM và △DMC có:
AM=MD(gt)
MB=MC(gt)
^AMB=^CMD(đối đỉnh)
⇒ΔAMB=ΔDMC(cmt)(đpcm).
b/ Ta có: ΔAMB=ΔDMC(cmt)
⇒^MAB=^MDC⇒^MAB=^MDC[ hai góc ở vị trí so le trong]
Vậy: AB // CD (đpcm).