K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

kết quả là-2002

22 tháng 3 2016

bạn giải rõ được không?

8 tháng 3 2017

\(B=\left|1-2x\right|+\left|y+7\right|=\left|2x-1\right|+\left|y+7\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)  \(\forall a;b\) Ta có :

\(B=\left|2x-1\right|+\left|y+7\right|\ge\left|\left(2x-1\right)+\left(y+7\right)\right|=\left|\left(2x+y\right)+6\right|=\left|2010+6\right|=2016\)

Dấu "=" xảy ra <=> \(\left(1-2x\right)\left(y+7\right)\ge0\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\y\ge-7\end{cases}}\)

Vậy \(B_{min}=2016\) tại \(x\le\frac{1}{2};y\ge7\)

8 tháng 3 2017

trả lời sai rồi bạn ơi

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

10 tháng 5 2019

7 tháng 2 2019

Đáp án A