Cho tam giác ABC vuông tại C (CB>AC). Lấy D là điểm bất kì trên cạnh AB. Gọi E là hình chiếu của D trên cạnh BC.
a) Chứng minh: tứ giác CEAD là hình thang vuông.
b)Kẻ DF vuông góc với AC tại F. Chứng minh: tứ giác CEDF là hình chữ nhật và tính diện tích của tứ giác CEDF biết EF= 10cm, DE= 6cm.
c) Lấy điểm G thuộc tia DE sao cho DG=AC. Chứng minh: AE=FG.
d) Gọi M là giao điểm của CD và FE. Chứng minh rằng: M thuộc đường thẳng cố định khi di chuyển trên AB.
Giúp mik với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{NAM}=90^0\)
Do đó: AMEN là hình chữ nhật
mà AE là tia phân giác
nen AMEN là hình vuông
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
Do đó: AEDF là hình vuông
b: ΔDEB vuông tại E
mà EM là trung tuyến
nên EM=MD
=>góc EMD=2*góc ABC
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi
a: Sửa đề; DA=EF
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nen AEDF là hình chữ nhật
=>DA=EF
b: Xét tứ giác AFEH có
AF//HE
AF=HE
Do đó: AFEH là hình bình hành
XétΔABC có
Dlà trung điểm của BC
DE//AC
Do đó E là trung điểm của AB
Xét ΔABC có
D là trung điểm của BC
DF//AB
Do đó:F là trung điểm của AC
Xét tứ giác AHBD có
E là trung điểm chung của AB và HD
AB vuông góc với HD
Do đó: AHBD là hình thoi
=>AB là phân giác của góc HAD(1)
c: Xét tứ giác ADCI có
F là trung điểm chung của AC và DI
DA=DC
Do đó: ADCI là hình thoi
=>AC là phân giác của góc DAI(2)
Từ (1), (2) suy ra góc IAH=2*90=180 độ
=>I,A,H thẳng hàng
mà AI=AH
nên A là trung điểm của IH