K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

a, Gọi A là biến cố "Cả 3 bạn là nam".

\(\left|\Omega\right|=C^3_{25}\)

\(\left|\Omega_A\right|=C^3_{13}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|\Omega_A\right|}{\left|\Omega\right|}=\dfrac{C^3_{13}}{C^3_{25}}=\dfrac{143}{1150}\)

28 tháng 12 2021

b, Gọi B là biến cố "Có 2 bạn nam và 1 bạn nữ".

\(\left|\Omega\right|=C^3_{25}\)

\(\left|\Omega_B\right|=C^2_{13}.C^1_{12}\)

\(\Rightarrow P\left(B\right)=\dfrac{\left|\Omega_B\right|}{\left|\Omega\right|}=\dfrac{C^2_{13}.C^1_{12}}{C^3_{25}}=\dfrac{234}{575}\)

NV
25 tháng 12 2022

Không gian mẫu: \(C_5^3=10\)

Chọn 3 bạn có ít nhất 2 nữ: ta có 2 trường hợp thuận lợi là 2 nữ 1 nam và 3 bạn đều nữ

\(\Rightarrow C_2^1.C_3^2+C_3^3=7\) cách

Xác suất: \(P=\dfrac{7}{10}\)

26 tháng 4 2023

a. \(C^1_7=7\left(cách\right)\)

b. \(C^1_3=3\left(cách\right)\)

c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)

2 tháng 9 2018

Số cách chọn các bạn đi lao động là:

Gọi biến cố A: “Chọn mỗi tổ 2 bạn đi lao động, trong đó có đúng 3 bạn nữ”.

Khi đó ta có các TH sau:

+) Tổ 1 có 2 bạn nữ, tổ 2 có 1 bạn nữ và 1 bạn nam có:

+) Tổ 1 có 1 bạn nữ và 1 bạn nam, tổ 2 có 2 bạn nữ có:

Chọn B.

25 tháng 12 2017

Chọn B

Chọn mỗi tổ 2 bạn nên số phần tử của không gian mẫu .

Gọi A là biến cố : “Có đúng 3 bạn nữ trong 4 bạn đi lao động”, khi đó

TH1: Chọn 2 nữ tổ I, 1 nữ tổ II, 1 nam tổ II có .

TH2: Chọn 2 nữ tổ II, 1 nữ tổ I, 1 nam tổ I có .

Suy ra .

Xác suất để chọn 4 bạn đi lao động có đúng 3 bạn nữ là .

\(n\left(\Omega\right)=C^2_8\)

\(n\left(A\right)=C^2_5\)

=>P(A)=5/14

13 tháng 8 2018

Chọn B.

Không gian mẫu có số phần tử là .

Gọi A là biến cố: “Trong 5 bạn được chọn có cả nam và nữ, đồng thời số nam nhiều hơn số nữ”. Khi đó, số kết quả thuận lợi cho biến cố A là: .

Vậy xác suất cần tính là .