Cho hình chữ nhật ABCD, kẻ BH vuông góc với AC tại H. Trên AH lấy điểm M và trên AC lấy điểm N sao cho: \(\dfrac{AM}{AH}=\dfrac{DN}{DC}\). CMR: \(MN\perp BM\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẽ NI // BC
\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)
\(\Rightarrow\)MI // BH
\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)
Tứ giác IBCN có
\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)
\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật
\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)
Xét tứ giác IMCB có
\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\
\(\widehat{IBC}=90\)
\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn
\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB)
Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)
\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)
\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn
Hay M,B,C,N cùng nằm trên một đường tròn
Ta có:
BM=BA
=> Tam giác ABM cân tại B
=> \(\widehat{BAM}=\widehat{BMA}\)
mà \(\widehat{BAM}+\widehat{MAC}=90^o\)
=> \(\widehat{BMA}+\widehat{MAC}=90^o\)
mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)
=> \(\widehat{HAM}=\widehat{MAC}\)(1)
Ta có: AH=AN (2)
AM chung (3)
=>Tam giác AHM=ANM
=> \(\widehat{ANM}=\widehat{AHM}=90^o\)
=> AC vuông MN
b) => Tam giác MNC vuông tại N có cạnh huyền MC
=> MC>NC
=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC
=> dpcm
Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC